In this paper, we consider probabilistic context-free grammars, a class of generative devices that has been successfully exploited in several applications of syntactic pattern matching, especially in statistical natural language parsing. We investigate the problem of training probabilistic context-free grammars on the basis of distributions defined over an infinite set of trees or an infinite set of sentences by minimizing the cross-entropy. This problem has applications in cases of context-free approximation of distributions generated by more expressive statistical models. We show several interesting theoretical properties of probabilistic context-free grammars that are estimated in this way, including the previously unknown equivalence between the grammar cross-entropy with the input distribution and the so-called derivational entropy of the grammar itself. We discuss important consequences of these results involving the standard application of the maximum-likelihood estimator on finite tree and sentence samples, as well as other finite-state models such as Hidden Markov Models and probabilistic finite automata.

Probabilistic Context-Free Grammars Estimated from Infinite Distributions

SATTA, GIORGIO
2007

Abstract

In this paper, we consider probabilistic context-free grammars, a class of generative devices that has been successfully exploited in several applications of syntactic pattern matching, especially in statistical natural language parsing. We investigate the problem of training probabilistic context-free grammars on the basis of distributions defined over an infinite set of trees or an infinite set of sentences by minimizing the cross-entropy. This problem has applications in cases of context-free approximation of distributions generated by more expressive statistical models. We show several interesting theoretical properties of probabilistic context-free grammars that are estimated in this way, including the previously unknown equivalence between the grammar cross-entropy with the input distribution and the so-called derivational entropy of the grammar itself. We discuss important consequences of these results involving the standard application of the maximum-likelihood estimator on finite tree and sentence samples, as well as other finite-state models such as Hidden Markov Models and probabilistic finite automata.
File in questo prodotto:
File Dimensione Formato  
TPAMI-0249-0306-2.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 413.43 kB
Formato Adobe PDF
413.43 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1776842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact