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Abstract—In this paper, we consider probabilistic context-free grammars, a class of generative devices that has been successfully

exploited in several applications of syntactic pattern matching, especially in statistical natural language parsing. We investigate the

problem of training probabilistic context-free grammars on the basis of distributions defined over an infinite set of trees or an infinite set

of sentences by minimizing the cross-entropy. This problem has applications in cases of context-free approximation of distributions

generated by more expressive statistical models. We show several interesting theoretical properties of probabilistic context-free

grammars that are estimated in this way, including the previously unknown equivalence between the grammar cross-entropy with the

input distribution and the so-called derivational entropy of the grammar itself. We discuss important consequences of these results

involving the standard application of the maximum-likelihood estimator on finite tree and sentence samples, as well as other finite-state

models such as Hidden Markov Models and probabilistic finite automata.

Index Terms—Probabilistic context-free grammars, maximum-likelihood estimation, derivational entropy, cross-entropy, expectation-

maximization methods, Hidden Markov Models.

Ç

1 INTRODUCTION

A probabilistic context-free grammar (PCFG) [1], [2] is a

generative model that is able to describe hierarchical
tree-shaped structures underlying sentences in a given

domain of interest. At the same time, a PCFG provides a

probability distribution over such structures and over the

generated strings that can be used to support decisions in

several tasks based on sentence analysis. PCFGs are widely

used nowadays in statistical natural language processing;

see, for instance, [3] and [4] and references therein. In

speech recognition, PCFGs also seem more suitable for
language modeling than finite-state devices and several

language models based on these grammars have recently

been proposed in the literature; see, for instance, [5], [6], [7].

PCFGs are also exploited in several other areas related to

syntactic pattern matching, for instance, in computational

biology to model secondary structures in tRNA [8], in

optical character recognition, in computer vision to model

image shaping and scene analysis, and in the recognition of
structured diagrams such as electrical circuits [9]. Finally,

PCFGs are closely related to multitype branching processes

[10] that are used to model population biology and to

recursive Markov chains [11] that are used in computer

program analysis and in model checking.

Empirical estimation of PCFGs is usually carried out on

treebanks, that is, finite samples of parse trees, through the

maximization of the likelihood of the sample itself. It is well-

known that this method also minimizes the cross-entropy

between the tree distribution induced by the treebank, which

is also called the empirical distribution, and the tree

distribution induced by the estimated grammar. In this

paper, we generalize this methodology to any unrestricted

distribution, defined over an infinite set of trees. We derive an

estimator for PCFGs that minimizes the cross-entropy

between the input tree distribution and the tree distribution

induced by the grammar itself. The problem has important

applications in cases in which a PCFG is used to approximate

a more powerful generative model. In natural language

processing, such approximation problems have been con-

sidered in application-oriented settings in [12] and [13].
In this paper, we also prove some interesting and useful

properties of PCFGs that are estimated using the technique

described above. One such property is quite unexpected.

More specifically, we consider the following information-

theoretic quantities:

. the cross-entropy between the unrestricted tree
distribution given as input and the tree distribution
induced by the estimated PCFG and

. the so-called derivational entropy of the estimated
PCFG.

These two quantities are usually unrelated; see [4]. We show

that these two quantities take the same value when the PCFG

is trained using the minimal cross-entropy criterion.

We generalize the above results by investigating the

problem of estimating a PCFG on the basis of any unrestricted

distribution defined over an infinite set of sentences rather

than trees. We introduce an iterative estimation algorithm

that locally minimizes the cross-entropy between the input
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sentence distribution and the sentence distribution induced

by the grammar itself. These results can be viewed as a

generalization of the well-known expectation-maximization

(EM) training method [14] as applied to PCFGs. We then

transfer to this case the results obtained for the estimation

method above, based on tree distributions. This also includes

the equivalence between the cross-entropy and the deriva-

tional entropy of the grammar.

We also translate back all of the above properties to the case

of the maximum-likelihood estimators for finite treebanks

and for unannotated sentence corpora that are commonly

used in all the application areas discussed at the beginning of

this introduction. In this case, the equivalence between

cross-entropy and grammar entropy provides a result that

was not previously known in the literature on maximum-

likelihood estimation.

Finally, we investigate consequences of these findings for

generative models less powerful than PCFGs, for instance,

the Hidden Markov Models (HMMs) [15] and the prob-

abilistic finite automata [16] that are also widely exploited

in natural language processing, speech recognition, compu-

tational biology, computer vision, and model checking.

Not much is found in the literature about the estimation of

probabilistic grammars from infinite distributions. This line

of research was apparently started in [17], where the author

investigates the problem of training a target probabilistic

finite automaton from an infinite tree distribution induced by

an input PCFG. The problems we consider in this paper can be

seen as a generalization of the above problem, where the

input is an unrestricted tree distribution and the target model

is a PCFG. As will be discussed, our result about the

equivalence of cross-entropy and derivational entropy of

the target model translates back to a similar property for the

particular case studied in [17]. In [18], an estimator that

maximizes the likelihood of a probability distribution defined

over a finite set of trees is introduced as a generalization of the

maximum-likelihood estimator defined over (finite) tree-

banks. Again, the problems we consider here can be thought

of as generalizations of such an estimator to the case of

distributions over infinite sets of trees or sentences.

We close this introduction with a summary of the content

of the following sections: In Section 2, we briefly recall the

definitions of context-free grammar (CFG) and PCFG. In

Section 3, we derive our estimator based on probability

distributions defined over an infinite set of trees. In

Section 4, we prove some properties of the PCFG obtained

by means of such an estimator and, in Section 5, we prove

one of the main results of this paper, involving cross-

entropy and grammar entropy. In Section 6, we generalize

our estimator to distributions over infinite sets of sentences

and reformulate the results obtained for the case of tree

distributions. In Section 7, we consider the well-known case

of finite distributions, over trees or sentences, and transfer

the main results of the previous sections to this case. Finally,

in Section 8, we discuss some implications of our results for

the case of finite-state models. Section 9 closes this paper

with some concluding discussion.

2 PRELIMINARIES

Throughout this paper, we use standard notation and

definitions from the literature on formal languages and

probabilistic grammars, which we briefly summarize below.

We refer the reader to [19] and [20] for a more precise

presentation.
A CFG is a tuple G ¼ ðN;�; R; SÞ, where

1. N is a finite set of nonterminal symbols,
2. � is a finite set of terminal symbols disjoint from N ,
3. S 2 N is the start symbol, and
4. R is a finite set of rules of the form A! �, where

A 2 N and � 2 ð� [NÞ�.
We take as a given the notion of a finite tree derived by G,

having rootS and yield in ��. We denote byT ðGÞ the set of all

such trees and by LðGÞ the set of all the terminal strings in

their yields. Also, for a tree t 2 T ðGÞ, we denote by yðtÞ the

string in the yield of t.
As a convention, in this paper, we writeA;B; . . . to denote

symbols in N , a; b; . . . to denote symbols in � and �; �; . . . to

denote strings in ðN [ �Þ�. For a nonterminalA and a string�,

we write fðA;�Þ to denote the multiplicity (number of

occurrences) of A in �. For a rule ðA! �Þ 2 R and a tree

t 2 T ðGÞ, fðA! �; tÞ denotes the multiplicity of A! � in t.

We let fðA; tÞ ¼
P

� fðA! �; tÞ.
A PCFG is a pair Gp ¼ ðG; pGÞ, with a CFG G and a

function pG from R to real numbers in the interval [0, 1].

A PCFG is proper if for every A 2 N , we haveP
� pGðA! �Þ ¼ 1. The probability of t 2 T ðGÞ is the

product of the probabilities of all rules in t, counted

with their multiplicity. Formally, we define

pGðtÞ ¼
Y
A!�

pGðA! �ÞfðA!�;tÞ: ð1Þ

The probability of w 2 LðGÞ is the sum of the probabilities

of all the derivations that generate w, that is, we set

pGðwÞ ¼
P

yðtÞ¼w pGðtÞ.
A PCFG is consistent if pGðT ðGÞÞ ¼

P
t2T ðGÞ pGðtÞ ¼ 1,

that is, if it induces a probability distribution over the set of

finite trees and strings it generates. If a PCFG is proper, then

consistency means that no probability mass is lost in the

generation of trees of infinite length.

In this paper, we write log for logarithms in base 2 and ln

for logarithms in the natural base e. We always assume

0 � log 0 ¼ 0. We write EpG to denote the expectation under

distribution pG. The next two definitions are taken from [21].

In case Gp is proper and consistent, we can define the

derivational entropy ofGp as the expectation of the information

of parse trees in T ðGÞ, computed under distribution pG as

HdðpGÞ ¼ EpG log
1

pGðtÞ
¼ �

X
t2T ðGÞ

pGðtÞ � log pGðtÞ: ð2Þ
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Similarly, for each A 2 N , we also define the nonterminal

entropy of A as

HAðpGÞ ¼ EpG log
1

pGðA! �Þ
¼ �

X
�

pGðA! �Þ � log pGðA! �Þ:
ð3Þ

3 ESTIMATION BASED ON CROSS-ENTROPY

Let T be an infinite set of finite trees, not necessarily

generated by a CFG. We assume that trees in T have internal

nodes labeled by symbols inN , root nodes labeled by S 2 N ,

and leaf nodes labeled by symbols in �, with N and � finite

alphabets. We also assume that the set of rules that are

observed in T is drawn from some finite set R. Let pT be a

probability distribution defined over T , that is, a function

from T to set [0, 1] such that
P

t2T pT ðtÞ ¼ 1.

The skeleton CFG underlying T is defined as G ¼
ðN;�; R; SÞ. Note that we have T � T ðGÞ and, in the general

case, there might be trees in T ðGÞ that do not appear in T .

When this happens, we have that no CFG G can exactly

generate set T . We wish, in any event, to best approximate

distribution pT by turning G into some PCFG Gp ¼ ðG; pGÞ
and setting parameters pGðA! �Þ appropriately, for each

ðA! �Þ 2 R. Notice also that, even when T ¼ T ðGÞ, it might

not be possible to exactly capture the distribution pT by

means of any PCFG with skeleton G. Again, we wish to

define pG in such a way that pT is approximated at the best

degree, according to some chosen criterion.
One such criterion is to choose pG in such a way that the

cross-entropy between pT and pG is minimized, where we

now view pG as a probability distribution defined over

T ðGÞ. The cross-entropy between pT and pG is defined as the

expectation under distribution pT of the information of the

trees in T ðGÞ, computed under distribution pG
1 as

HðpTkpGÞ ¼ EpT log
1

pGðtÞ
¼ �

X
t2T

pT ðtÞ � log pGðtÞ: ð4Þ

We thus want to assign to the parameters pGðA! �Þ,
A! � 2 R, the values that minimize (4), subject to the

normalization conditions
P

� pGðA! �Þ ¼ 1 for eachA 2 N .
To solve the minimization problem above, we use

Lagrange multipliers �A for each A 2 N and define the form

r ¼
X
A2N

�A �
X
�

pGðA! �Þ � 1

 !
�
X
t2T

pT ðtÞ � log pGðtÞ: ð5Þ

We now view r as a function of all the �A and the pGðA!
�Þ and consider all of the partial derivatives of r. For each

A 2 N , we have

@r
@�A

¼
X
�

pGðA! �Þ � 1:

For each ðA! �Þ 2 R, we have

@r
@pGðA! �Þ ¼�A �

@

@pGðA! �Þ
X
t2T

pT ðtÞ � log pGðtÞ

¼�A �
X
t2T

pT ðtÞ �
@

@pGðA! �Þ

log
Y

ðB!�Þ2R
pGðB! �ÞfðB!�;tÞ

¼�A �
X
t2T

pT ðtÞ �
X

ðB!�Þ2R

@

@pGðA! �Þ

fðB! �; tÞ � log pGðB! �Þ

¼�A �
X
t2T

pT ðtÞ � fðA! �; tÞ � 1

ln 2
� 1

pGðA! �Þ

¼�A �
1

ln 2
� 1

pGðA! �Þ � EpT fðA! �; tÞ:

We now need to solve a system of jNj þ jRj equations
obtained by setting to zero all of the abovementioned partial
derivatives. From each equation @r

@pGðA!�Þ ¼ 0, we obtain

ln 2 � �A � pGðA! �Þ ¼ EpT fðA! �; tÞ: ð6Þ
We sum up all strings � such that ðA! �Þ 2 R:

ln 2 � �A �
X
�

pGðA! �Þ ¼
X
�

EpT fðA! �; tÞ: ð7Þ

From each equation @r
@�A
¼ 0, we obtain

P
� pGðA! �Þ ¼ 1

for each A 2 N (our original constraints). Combining with
(7), we obtain

ln 2 � �A ¼
X
�

EpT fðA! �; tÞ ¼
X
�

X
t2T

pT ðtÞ � fðA! �; tÞ

¼
X
t2T

pT ðtÞ �
X
�

fðA! �; tÞ ¼
X
t2T

pT ðtÞ � fðA; tÞ

¼ EpT fðA; tÞ:
ð8Þ

Replacing (8) into (6), we obtain, for every rule ðA! �Þ 2 R,

pGðA! �Þ ¼ EpT fðA! �; tÞ
EpT fðA; tÞ

: ð9Þ

Throughout this paper, we always assume that quantities
EpT fðA! �; tÞ are finite for every rule ðA! �Þ 2 R.
Equation (9) then defines the desired estimator for our
probabilistic PCFG.

In order to make proper use of expectations under pG, as
we will do in later sections, we show here that the PCFG Gp

obtained as above is consistent. The line of our argument
below follows a proof provided in [23] for the maximum-
likelihood estimator based on finite tree distributions.
Without loss of generality, we assume that, in Gp, the start
symbol S is never used in the right-hand side of a rule.

For each A 2 N , let qA be the probability that a derivation
in Gp rooted in A fails to terminate. We can then write

qA �
X
B2N

qB �
X
�

pGðA! �ÞfðB; �Þ: ð10Þ

The inequality follows from the fact that the events
considered in the right-hand side of (10) are not mutually
exclusive. Combining (9) and (10), we obtain
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The Kullback-Leibler divergence will not be used in this paper.



qA � EpT fðA; tÞ �
X
B2N

qB �
X
�

EpT fðA! �; tÞfðB; �Þ:

Summing up all nonterminals, we haveX
A2N

qA � EpT fðA; tÞ �
X
B2N

qB �
X
A2N

X
�

EpT fðA! �; tÞfðB;�Þ

¼
X
B2N

qB � EpT fcðB; tÞ;

ð11Þ

where fcðB; tÞ indicates the number of times a node labeled
by nonterminal B appears in the derivation tree t as a child
of some other node.

From our assumptions on the start symbol S, we have that
S only appears at the root of the trees in T ðGÞ. Then, it is easy
to see that, for everyA 6¼ S, we haveEpT fcðA; tÞ ¼ EpT fðA; tÞ,
whereas EpT fcðS; tÞ ¼ 0 and EpT fðS; tÞ ¼ 1. Using these
relations in (11), we obtain

qS � EpT fðS; T Þ � qS � EpT fcðS; T Þ;

that is, qs ¼ 0, which implies the consistency of Gp.

We conclude this section with a simple example showing

an application of the estimator in (9) to the approximation of

a strictly context-sensitive probabilistic language by means

of a PCFG. Consider the infinite set of trees T ¼ ftiji � 1g,
where each tree ti consists of i applications of rule S ! aSd,

followed by i� 1 applications of ruleS ! bSc and by a single

application of rule S ! bc. The yields of the trees in T form

the languageL ¼ faibicidiji � 1g, which cannot be generated

by a CFG. Let q be some real number with 0 < q < 1, and

consider the probability distribution pT defined over T as

pT ðtiÞ ¼ ð1� qÞ � qi�1, i � 1.2

The skeleton CFG G underlying T has a set of rules

R ¼ fS ! aSd; S ! bSc; S ! bcg. We now specify the PCFG

Gp ¼ ðG; pGÞ with the minimal cross-entropy HðpTkpGÞ. We

first compute the estimation of each rule in R, based on the

distribution pT . We have

EpT fðS ! aSd; tÞ ¼
Xþ1
i¼1

pT ðtiÞ � fðS ! aSd; tiÞ

¼
Xþ1
i¼1

ð1� qÞ � qi�1 � i

¼ ð1� qÞ � 1

ð1� qÞ2
¼ 1

1� q ;

ð12Þ

EpT fðS ! bSc; tÞ ¼
Xþ1
i¼1

ð1� qÞ � qi�1 � ði� 1Þ¼ð1� qÞ
Xþ1
i¼0

qi � i

¼ q � ð1� qÞ
Xþ1
i¼0

qi�1 � i ¼ q

1� q ;

ð13Þ

EpT fðA! bc; tÞ ¼
Xþ1
i¼1

ð1� qÞ � qi�1 ¼ ð1� qÞ
Xþ1
i¼0

qi ¼ 1:

ð14Þ
We also have

EpT fðS; tÞ ¼
X
S!�

EpT fðS ! �; tÞ ¼ 2

1� q ð15Þ

and, thus, a direct application of (9) provides pT ðS !
aSdÞ¼ 1

2 , pT ðS ! bScÞ ¼ q
2 , and pT ðS ! bcÞ ¼ 1�q

2 .

4 EXPECTED FREQUENCY OF RULES AND

NONTERMINALS

In the previous section, we have used the expected frequency

of a rule and of a nonterminal for a general tree distribution.

We now more closely investigate these quantities, assuming

the underlying distribution is defined by means of a PCFG,

and prove some important relations that will be used in later

sections. Below, we assume a fixed proper and consistent

PCFGGp ¼ ðG; pGÞwithG ¼ ðN;�; R; SÞ. As already done in

Section 3, we assume, without loss of generality, that the start

symbol S is never found in the right-hand side of any rule

of G.
We start by proving the relation

EpGfðA! �; tÞ ¼ pGðA! �Þ � EpGfðA; tÞ ð16Þ

for every rule A! �. This expresses the rather intuitive fact
that the expected number of As generated by the grammar
times the probability of rule A! � equals the expected
number of A! � that are generated. Let us define a new
function p0G such that, for each rule A! �, we have

p0GðA! �Þ ¼ EpGfðA! �; tÞ
EpGfðA; tÞ

:

We know from Section 3 that the cross-entropy HðpGkp0GÞ is
minimal, that is,

�
X
t2T ðGÞ

pGðtÞ � log pGðtÞ � �
X
t2T ðGÞ

pGðtÞ � log p0GðtÞ:

From the information inequality, reported, for instance, in
[22, Theorem 2.6.3], we have that

�
X
t2T ðGÞ

pGðtÞ � log p0GðtÞ � �
X
t2T ðGÞ

pGðtÞ � log pGðtÞ;

with the inequality holding if and only if p0G ¼ pG for every
t 2 T ðGÞ. From the abovementioned relations, we must
conclude that p0G ¼ pG pointwise, which implies (16).
Another way of looking at the above property is this: Let
us rewrite (16) as

pGðA! �Þ ¼ EpGfðA! �; tÞ
EpGfðA; tÞ

:

Then, we have that, if we reestimate a PCFG Gp based on its
own tree distribution and using (9), we obtain Gp itself.

Different methods for the computation of the expectations
EpGfðA! �; tÞ and EpGfðA; tÞ have been derived in the
literature. A method based on the so-called momentum matrix
is reported in [25]. In [26], the same quantities are computed
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using a generalization of recursive relations originally
presented in [27]. In [17], an alternative method is proposed,
based on the notion of outside probabilities that is related to
the inside-outside algorithm [28], [3] for the unsupervised
estimation of PCFGs from sentence samples. Below, we
follow the idea in [17], but develop a different notation.

We need some auxiliary notation. For any A;B 2 N , we
let �ðA;BÞ ¼ 1 if A ¼ B and �ðA;BÞ ¼ 0 otherwise. Under
our assumption on the start symbol S, we have fðS; tÞ ¼ 1
for every t 2 T ðGÞ. This means that EpGfðS; tÞ ¼ 1. We now
observe that, for any A 2 N with A 6¼ S and any t 2 T ðGÞ,
we have

fðA; tÞ ¼
X
B!�

fðB! �; tÞ � fðA; �Þ: ð17Þ

Note also that, for A ¼ S, the right-hand side of (17)
becomes null. For each A 2 N , we can then write

EpGfðA; tÞ ¼
X
t2T ðGÞ

pGðtÞ � fðA; tÞ ¼ �ðA;SÞ þ
X
t2T ðGÞ

pGðtÞ

�
X
B!�

fðB! �; tÞ � fðA; �Þ

¼ �ðA;SÞ þ
X
B!�

X
t2T ðGÞ

pGðtÞ � fðB! �; tÞ � fðA; �Þ

¼ �ðA;SÞ þ
X
B!�

EpGfðB! �; tÞ � fðA; �Þ:

ð18Þ

Using (16) in (18) provides

EpGfðA; tÞ ¼ �ðA;SÞ þ
X
B!�

EpGfðB; tÞ � fðA; �Þ � pGðB! �Þ:

ð19Þ

The relations in (19) thus define a system of jNj linear

equations in the unknowns EpGfðA; tÞ. As is well-known,

such a system can be solved in polynomial time [29]. The

rule expectations EpGfðA! �; tÞ can then be computed

using relations (16).
We conclude this section by showing an important relation

that will be used to prove one of the main results in this paper,
presented in Section 5. Let T be an infinite set of trees
satisfying the assumptions of Section 3, that is, the set of rules
underlying T is finite and symbol S is only observed at the
root of the trees in T . Also let pT be a probability distribution
defined over T such that quantities EpT fðA! �; tÞ are all
finite. Let G be the skeleton grammar for T and let Gp ¼
ðG; pGÞ be the PCFG estimated by minimizing the cross-
entropy HðPTkPGÞ, as in Section 3. We show below that

EpT fðA; tÞ ¼ EpGfðA; tÞ; ð20Þ

for every nonterminal A. This means that, when we

estimate a PCFG Gp from a general tree distribution by

means of cross-entropy minimization, we might end up

with an enlarged set of generated trees with respect to the

original distribution, but the probabilities of the single rules

are reassigned in such a way that we always preserve the

expected frequency of nonterminals.

We now prove (20). Since the start symbol S only appears

at the root of trees in T , we must have EpT fðS; tÞ ¼ 1. Using

(17), we can write, for each A 2 N ,

EpT fðA; tÞ ¼
X
t2T

pT ðtÞ � fðA; tÞ ¼ �ðA;SÞ

þ
X
t2T

pT ðtÞ �
X
B!�

fðB! �; tÞ � fðA; �Þ

¼ �ðA;SÞ þ
X
B!�

EpT fðB! �; tÞ � fðA; �Þ:

ð21Þ

From the definition of the minimum cross-entropy estima-

tor in (9), we have

EpT fðA! �; tÞ ¼ pGðA! �Þ � EpT fðA; tÞ; ð22Þ

which, when replaced in (21), provides

EpT fðA; tÞ ¼ �ðA;SÞ þ
X
B!�

fðA; �Þ � pGðB! �Þ � EpT fðB; tÞ:

ð22Þ

Notice that the linear system in (19) and the linear system in

(22) are the same and must therefore have the same solution.

This completes our proof of the equality in (20).

5 CROSS-ENTROPY AND DERIVATIONAL ENTROPY

In this section, we present one of the main results of the

paper. We show that, when a PCFG is estimated by

minimizing the cross-entropy relative to some tree distribu-

tion, then the minimal cross-entropy takes the same value

as the derivational entropy of the grammar itself.
Let pT be a probability distribution defined over an

infinite tree set T and let Gp ¼ ðG; pGÞ be a PCFG that has

been estimated on pT using the cross-entropy minimization

method of Section 3. Then, Gp is a consistent PCFG, as

already shown in Section 3. We let G ¼ ðN;�; R; SÞ. We

now prove the equality

HdðpGÞ ¼ HðpTkpGÞ: ð23Þ

We start by deriving some relations for the derivational

entropy (see also [30] for a related idea). We can write

HdðpGÞ ¼ �
X
t2T ðGÞ

pGðtÞ � log pGðtÞ

¼ �
X
t2T ðGÞ

pGðtÞ � log
Y
A!�

pGðA! �ÞfðA!�;tÞ

¼ �
X
t2T ðGÞ

pGðtÞ �
X
A!�

fðA! �; tÞ � log pGðA! �Þ

¼ �
X
A!�

log pGðA! �Þ � EpGfðA! �; tÞ

¼ �
X
A!�

log pGðA! �Þ � pGðA! �Þ � EpGðA; T Þ; ð24Þ

¼ �
X
A2N

EpGfðA; tÞ �
X
�

pGðA! �Þ � log pGðA! �Þ

¼
X
A2N

EpGfðA; tÞ �HAðpGÞ: ð25Þ

Note that, in (24), we have used (16). Also, for each A 2 N ,

quantities HAðpGÞ in (25) have been defined in (3).
We move next to the definition of cross-entropy, which

can be rewritten as
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HðpTkpGÞ ¼ �
X
t2T

pT ðtÞ � log pGðtÞ

¼ �
X
t2T

pT ðtÞ � log
Y
A!�

pGðA! �ÞfðA!�;tÞ

¼ �
X
t2T

pT ðtÞ �
X
A!�

fðA! �; tÞ � log pGðA! �Þ

¼ �
X
A!�

log pGðA! �Þ � EpT fðA! �; tÞ:

ð26Þ

Using the estimator in (9) into (26) provides

HðpTkpGÞ ¼ �
X
A!�

log pGðA! �Þ � pGðA! �Þ � EpT fðA; tÞ

¼ �
X
A2N

EpT fðA; tÞ �
X
�

pGðA! �Þ � log pGðA! �Þ

¼
X
A2N

EpT fðA; tÞ �HAðpGÞ:

ð27Þ

Comparing (27) with (25), we see that the equality in (23)
holds if, for each A 2 N , the expectations EpT fðA; tÞ and
EpGfðA; tÞ are the same. But, this is the equality in (20) from
Section 4. This concludes our proof.

As already discussed in Section 3, when T ðGÞ is a proper
superset of T , we have that no PCFG using the rules observed
in T can define the distribution pT . Consequently, to generate
all of the trees inT ðGÞ, a PCFG is forced to also generate some
nonempty set of treesT ðGÞ � T , assigning to these trees some
nonnull probability mass that is somehow “removed” from
the probability mass originally assigned by pT to set T ðGÞ.
Accordingly, we can rewrite the equality in (23) as

�
X
t2T
ðpT ðtÞ � pGðtÞÞ � log pGðtÞ ¼ �

X
t2ðT ðGÞ�T Þ

pGðtÞ � log pGðtÞ:

ð28Þ

This shows that the contribution to the cross-entropy
HðpTkpGÞ due to the probability mass that is reassigned
by pG to the trees in T ðGÞ � T , expressed in the left-hand
side of (28), exactly equals the contribution to the deriva-
tional entropy HdðpGÞ due to the same reassigned prob-
ability mass, expressed in the right-hand side of (28).

Besides its theoretical significance, the equality in (23) can
also be exploited in the computation of the cross-entropy in
practical applications. In fact, cross-entropy indicates how
much the estimated model fits the source model and is
commonly exploited in the comparison of different models
that have been estimated on an observed distribution to select
the model that has the best fit. We can then use the equality
between cross-entropy and derivational entropy to compute
one of these two quantities from the other. In the case of
estimation from an infinite distribution pT , the definition of
the cross-entropy HðpTkpGÞ contains an infinite summation,
which is problematic for the computation of such a quantity.
In standard practice, this problem might be overcome by
generating a finite sample, that is, a multiset, T ðnÞ of large
size n through the distribution pT and then computing the
following approximation [4]:

HðpTkpGÞ � �
1

n
�
X
t2T

fðt; T ðnÞÞ � log pGðtÞ; ð29Þ

where we have indicated by fðt; T ðnÞÞ the multiplicity, that is,

the number of occurrences, of t in T ðnÞ. The main problem

with such an approach, however, is that, in practical

applications, we need to use very large values of n in order

to reduce the approximation error. Based on the results in this

section, we can instead compute the exact value ofHðpTkpGÞ
by computing the derivational entropy HdðpGÞ, using (25),

and solving the linear system in (19), which takes cubic time in

the number of nonterminals of the grammar.
To conclude this section, we discuss a simple example

showing an application of the theory and the results

developed so far. Consider the infinite set of trees T ¼
ftiji � 0g, where each ti is composed of i applications of the

rule S ! aSb followed by a single application of the rule

S ! ". We define on T the probability distribution pT ðtiÞ ¼
1
e�i! . Note that

Pþ1
i¼0

1
e�i! ¼ e � 1

e ¼ 1, where we have assumed

0! ¼ 1. In [20], it is shown that no PCFG can generate

distribution pT .
LetGp ¼ ðG; pGÞ be the PCFG defined by pGðS ! aSbÞ ¼ p

and pGðS ! "Þ ¼ 1� p. This PCFG induces a probability

distribution over T defined by pGðtiÞ ¼ pi � ð1� pÞ. The

derivational entropy of Gp and the cross-entropy between

the tree distributions pT and pG are both functions of the

parameter p and can be expressed by the relations

HdðpGÞ ¼ �
Xþ1
i¼0

pið1� pÞ � log pið1� pÞ

¼ �ð1� pÞ
Xþ1
i¼1

i � pi�1

 !
p

� log p� ð1� pÞ
Xþ1
i¼0

pi

 !
logð1� pÞ

¼ �ð1� pÞ p

ð1� pÞ2
log pþ 1

1� p logð1� pÞ
 !

¼ � p

1� p log p� logð1� pÞ; ð30Þ

HðpTkpGÞ ¼ �
Xþ1
i¼0

1

e � i! log pið1� pÞ

¼ �
Xþ1
i¼0

i

e � i! log p�
Xþ1
i¼0

1

e � i! logð1� pÞ

¼ �
Xþ1
i¼1

1

eði� 1Þ! log p�
Xþ1
i¼0

1

e � i! logð1� pÞ

¼ � log p� logð1� pÞ: ð31Þ

These functions are plotted in Fig. 1.
Following Section 3, the value of p that minimizes the

cross-entropy can be obtained through (9) as

p ¼ EpT fðS ! aS b; tÞ
EpT fðS ! aS b; tÞ þ EpT fðS ! "; tÞ : ð32Þ

Since each t 2 T has exactly one occurrence of rule S ! ",

we have EpT fðS ! "; tÞ ¼ 1. We can also derive
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EpT fðS ! aSb; tÞ ¼
Xþ1
i¼0

i � 1

e � i! ¼
Xþ1
i¼1

1

e � ði� 1Þ!

¼
Xþ1
i¼0

1

e � i! ¼ 1:

ð33Þ

From (32) and (33), we have p ¼ 1� p ¼ 1
2 . For such a PCFG,

the cross-entropy assumes its minimal value, given by (31):
� log p� logð1� pÞjp¼1

2
¼ 2. As expected from (23), the

derivational entropy of the grammar also has the same
value, given by (30): � p

1�p log p� logð1� pÞjp¼1
2
¼ 2.

We can also verify that the expected number of occur-
rences for each nonterminal is the same when computed by
means of pT or when computed by means of pG, as shown in
(20). We have

EpT fðS; tÞ ¼ EpT fðS ! aS b; tÞ þ EpT fðS ! "; tÞ ¼ 2; ð34Þ

EpGfðS; tÞ ¼
Xþ1
i¼0

ðiþ 1Þ � 1

2iþ1
¼ 1

2

Xþ1
i¼0

ðiþ 1Þ � 1

2i
¼ 1

2
� 22 ¼ 2:

ð35Þ

6 GENERALIZATION TO SENTENCE DISTRIBUTIONS

We generalize here the approach of Section 3 and the results
of Section 5 to the case of probability distributions over
infinite sets of strings. One could view this as a generalization
of a supervised method to the unsupervised case, where
estimation is based solely on string distributions, that is, no
annotation about derivations is provided.

Let C be an infinite set of (finite) strings and let pC be a
probability distribution defined overC. Consider a CFGG ¼
ðN;�; R; SÞ such thatC � LðGÞ. We want to extendG to some
PCFG Gp ¼ ðG; pGÞ, where function pG is chosen in such a
way that the cross-entropy between pC and pG is minimized
(we now view pG as a probability distribution defined over
LðGÞ). Formally, we have to minimize the function

HðpCkpGÞ ¼ EpC log
1

pGðwÞ
¼ �

X
w2C

pCðwÞ � log pGðwÞ; ð36Þ

subject to the usual normalization conditions
P

� pGðA!
�Þ ¼ 1 for each A 2 N . As in Section 3, we use Lagrange
multipliers �A for each A 2 N and define the form

r ¼
X
A2N

�A �
X
�

pGðA! �Þ � 1

 !
�
X
w2C

pCðwÞ � log pGðwÞ:

ð37Þ

For each A 2 N , we have

@r
@�A
¼
X
�

pGðA! �Þ � 1:

For each ðA! �Þ 2 R, we have

@r
@pGðA! �Þ ¼ �A �

X
w2C

pCðwÞ �
@

@pGðA! �Þ log pGðwÞ

¼ �A �
X
w2C

pCðwÞ �
@

@pGðA! �Þ

log
X
yðtÞ¼w

Y
B!�

pGðB! �ÞfðB!�;tÞ

¼ �A �
X
w2C

pCðwÞ �
1

ln 2

� 1P
yðtÞ¼w

Q
B!� pGðB! �ÞfðB!�;tÞ

�

� @

@pGðA! �Þ
X
yðtÞ¼w

Y
B!�

pGðB! �ÞfðB!�;tÞ

¼ �A �
1

ln 2
�
X
w2C

pCðwÞ �
1

pGðwÞ

�
X
yðtÞ¼w

@

@pGðA! �Þ
Y
B!�

pGðB! �ÞfðB!�;tÞ

¼ �A �
1

ln 2
�
X
w2C

pCðwÞ �
1

pGðwÞ

�
X
yðtÞ¼w

fðA! �; tÞ � pGðA! �ÞfðA!�;tÞ�1�

�
Y

ðB!�Þ6¼ðA!�Þ
pGðB! �ÞfðB!�;tÞ

¼ �A �
1

ln 2
�
X
w2C

pCðwÞ �
1

pGðwÞ

�
X
yðtÞ¼w

fðA! �; tÞ � 1

pGðA! �Þ �

�
Y
ðB!�Þ

pGðB! �ÞfðB!�;tÞ

¼ �A �
1

ln 2
�
X
w2C

pCðwÞ �
1

pGðwÞ
� 1

pGðA! �Þ

�
X
yðtÞ¼w

fðA! �; tÞ � pGðtÞ

¼ �A �
1

ln 2
� 1

pGðA! �Þ �
X
w2C

pCðwÞ

�
X
yðtÞ¼w

pGðtjwÞ � fðA! �; tÞ

¼ �A �
1

ln 2
� 1

pGðA! �Þ �
X
w2C

pCðwÞ

� EpGð�jwÞfðA! �; tÞ

¼ �A �
1

ln 2
� 1

pGðA! �Þ � EpCEpGð�jwÞfðA! �; tÞ:
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Fig. 1. Derivational entropy and cross-entropy for PCFG Gp, plotted as a
function of p.



We now set to zero all of the above partial derivatives,

resulting in a system of jN j þ jRj equations. The solutions of

this system are all the points at which (36) has zero partial

derivatives. From each equation @r
@pGðA!�Þ ¼ 0, we obtain

ln 2 � �A � pGðA! �Þ ¼ EpCEpGð�jwÞfðA! �; tÞ ð38Þ

and, summing over all � such that ðA! �Þ 2 R, we find

ln 2 � �A �
X
�

pGðA! �Þ ¼
X
�

EpCEpGð�jwÞfðA! �; tÞ

¼ EpCEpGð�jwÞfðA; tÞ:
ð39Þ

From each equation @r
@�A
¼ 0, we obtain

P
� pGðA! �Þ ¼ 1

for each A 2 N , which, when combined with (39), results in

ln 2 � �A ¼ EpCEpGð�jwÞfðA; tÞ: ð40Þ

Replacing (40) into (38), we obtain, for every rule ðA! �Þ 2 R,

pGðA! �Þ ¼
EpCEpGð�jwÞfðA! �; tÞ
EpCEpGð�jwÞfðA; tÞ

: ð41Þ

Asalreadymentioned, theaboverelationsareageneralization

of the relations in (9) to the unsupervised case. Alternatively,

we can also view the relations in (41) as a generalization of the

maximum-likelihood estimator for PCFGs based on a (finite)

sample of bare sentences, which is well-known in the

literature and will be later discussed in Section 7.

Note that (41) cannot be directly used for the computa-

tion of quantities pGðA! �Þ since these quantities also

appear in the right-hand sides of these equations, through

the definitions of quantities pGðtjwÞ (see the definitions of

the probability of a tree and of a sentence in Section 2).

Thus, the relations (41) represent a system of nonlinear

equations in the jRj unknowns pGðA! �Þ. Furthermore,

any solution to such a nonlinear system does not necessarily

identify an absolute minimum for (36) since, as is well-

known, partial derivatives are also null at local minima and

maxima or on saddle points. These problems frequently

arise in unsupervised learning methods based on finite

samples [31] and are usually faced by applying iterative

methods such as the EM method. We also propose here an

iterative method which can be thought of as a general-

ization of the EM method; more discussion of the

EM method will be provided later in Section 7.

We use (41) iteratively, starting from an initial PCFG

function pG that satisfies the normalization conditions of the

problem. A single iteration provides a new function p̂G

defined by

p̂GðA! �Þ ¼
EpCEpGð�jwÞfðA! �; tÞ
EpCEpGð�jwÞfðA; tÞ

: ð42Þ

We show below that, at each iteration, the cross-entropy in

(36) does not increase, that is,

HðpCkp̂GÞ � HðpCkpGÞ: ð43Þ

Consequently, the algorithm converges to some local solu-

tion that does not have to be a maximum. Different halting

criteria can then be used, for example, a threshold on the

cross-entropy variation. Our proof below is partly based on

the treatment of the standard EM method presented in [32].

The basic idea in the proof of (43) is to map the

unsupervised problem at hand to an estimation problem

based on a specific tree distribution. Let T ðCÞ be the set of

all trees of G that generate a string in C, that is,

T ðCÞ ¼ ftjyðtÞ 2 Cg. Obviously, T ðCÞ is an infinite set. We

associate with pC a probability distribution pT ðCÞ defined on

each t 2 T ðCÞ as

pT ðCÞðtÞ ¼ pCðyðtÞÞ � pGðtjyðtÞÞ ¼ pCðyðtÞÞ �
pGðtÞ
pGðyðtÞÞ

; ð44Þ

where we have used relation pGðt; yðtÞÞ ¼ pGðtÞ. It is easy to

verify that
P

t2T ðCÞ pT ðCÞðtÞ ¼ 1.

We can now derive a new PCFG function p0G that

minimizes the cross-entropy HðpT ðCÞkp0GÞ by applying our

estimator in (9). This provides

p0GðA! �Þ ¼
EpT ðCÞfðA! �; tÞ
EpT ðCÞfðA; tÞ

¼
P

t2T ðCÞ pT ðCÞðtÞ � fðA! �; tÞP
t2T ðCÞ pT ðCÞðtÞ � fðA; tÞ

¼
P

t2T ðCÞ pCðyðtÞÞ � pGðtjyðtÞÞ � fðA! �; tÞP
t2T ðCÞ pCðyðtÞÞ � pGðtjyðtÞÞ � fðA; tÞ

¼
P

w2C pCðwÞ
P

yðtÞ¼w pGðtjwÞ � fðA! �; tÞP
w2C pCðwÞ

P
yðtÞ¼w pGðtjwÞ � fðA; tÞ

¼
EpCEpGð�jwÞfðA! �; tÞ
EpCEpGð�jwÞfðA; tÞ

:

ð45Þ

Comparing (45) and (42), we immediately see that p0G ¼ p̂G
pointwise. We then conclude that, at each iteration of the

step in (42), we have HðpT ðCÞkp̂GÞ � HðpT ðCÞkpGÞ.
To complete our proof of (43), we need to introduce some

new notation. For each w 2 C, we define

HwðpT ðCÞkpGÞ ¼ HðpT ðCÞð�jwÞkpGð�jwÞÞ
¼ �

X
yðtÞ¼w

pT ðCÞðtjwÞ � log pGðtjwÞ: ð46Þ

From (44), we have pT ðCÞðwÞ ¼ pCðwÞ. Thus, for each t 2
T ðCÞ and w 2 C such that yðtÞ ¼ w, we can write

pT ðCÞðtjwÞ¼
pT ðCÞðt; wÞ
pT ðCÞðwÞ

¼
pT ðCÞðtÞ
pCðwÞ

¼pCðwÞ � pGðtjwÞ
pCðwÞ

¼pGðtjwÞ:

ð47Þ
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Using (47), we can now write

HðpT ðCÞkpGÞ ¼ �
X
t2T ðCÞ

pT ðCÞðtÞ � log pGðtÞ

¼ �
X
t2T ðCÞ

pCðyðtÞÞ � pGðtjyðtÞÞ � log pGðtÞ

¼ �
X
w2C

pCðwÞ
X
yðtÞ¼w

pGðtjwÞ � log½pGðwÞ � pGðtjwÞ	

¼ �
X
w2C

pCðwÞ
X
yðtÞ¼w

pGðtjwÞ � log pGðwÞ

�
X
w2C

pCðwÞ
X
yðtÞ¼w

pGðtjwÞ � log pGðtjwÞ

¼ �
X
w2C

pCðwÞ � log pGðwÞ

�
X
w2C

pCðwÞ
X
yðtÞ¼w

pT ðCÞðtjwÞ � log pGðtjwÞ

¼ HðpCkpGÞ þ EpCHwðpT ðCÞkpGÞ:
ð48Þ

Finally, let us consider the variation of the cross-entropy

obtained at each iteration of (42). Using (48), we can express

such a variation as

HðpCkp̂GÞ �HðpCkpGÞ ¼ HðpT ðCÞkp̂GÞ �HðpT ðCÞkpGÞ
� �

þEpC HwðpT ðCÞkpGÞ �HwðpT ðCÞkp̂GÞ
� �

:
ð49Þ

We now consider the two terms in the summation in the right-

hand side of (49). We have already discussed above that

HðpT ðCÞkp̂GÞ �HðpT ðCÞkpGÞ � 0 since a single iteration of (42)

cannot increase the cross-entropy. Using (47) and (46), we

have HwðpT ðCÞkpGÞ ¼ HwðpT ðCÞkpT ðCÞÞ so that such a term

becomes an entropy. From the already mentioned informa-

tion inequality, we haveHwðpT ðCÞkpT ðCÞÞ �HwðpT ðCÞkp̂GÞ � 0.

This concludes our proof of (43).

We remark here that one could view (42) as a way of

finding an approximate solution of the system in (41) by

means of the standard fixed-point iteration method. Such a

method is well-known in the numerical calculus literature

and is frequently applied to systems of nonlinear equations

because it can be easily implemented. When the method

converges, it does so by adding a fixed number of bits to the

precision of the solution at each iteration. See [33, Chapter 4]

for more details on the fixed-point iteration method.

We now discuss how the results in Section 5 can be

transferred to the unsupervised case at hand here. We have

already seen that the iteration proposed in (42) can also be

viewed as an instance of a supervised estimation, based on

the tree distribution pT ðCÞ. From Section 3, it follows that the

PCFG obtained at each run is consistent. Relation (23) in

Section 5 can then be applied, showing that the minimal

cross-entropy is equal to the derivational entropy of the

PCFG itself. More precisely, at each iteration, our estimation

method provides a distribution p̂G such that

HðpT ðCÞkp̂GÞ ¼ Hdðp̂GÞ; ð50Þ

where pT ðCÞ has been defined in (44).

We close this section with a running example in order to

show how to apply the theory developed above. Consider

the language C ¼ fanjn � 1g and the associated distribu-

tion pCðanÞ ¼ 1
2n . Also assume the CFG G defined by the

rules S ! Sa, S ! aS, S ! a, and let Gp ¼ ðG; pGÞ be

the PCFG defined by pGðS ! SaÞ ¼ p1, pGðS ! aSÞ ¼ p2,

pGðS ! aÞ ¼ p3, with p3 ¼ 1� p1 � p2. Note that C ¼ LðGÞ.
The probability of each string an, n � 1, must satisfy the

recursive relation

pGðanÞ ¼
p3; n ¼ 1;
ðp1 þ p2Þ � pGðan�1Þ; n > 1:

�

From this relation, one can easily derive

pGðanÞ ¼ ðp1 þ p2Þn�1p3:

For integers n � 1 and 1 � k � n� 1, let us denote by tn;k

any tree derived byG, having yield an and with k occurrences

of rule S ! Sa (and, therefore, with n� k� 1 occurrences of

S ! aS and one occurrence of S ! a). Thus, we have

pGðtn;kÞ ¼ pk1 � pn�k�1
2 � p3.

The last two relations can now be used to compute the

tree distribution expressed by (44), deriving

pT ðCÞðtn;kÞ ¼ pGðtn;kjanÞ � pCðanÞ ¼
pk1 � pn�k�1

2 � p3

ðp1 þ p2Þn�1 � p3

� 1

2n

¼ pk1 � pn�k�1
2

ðp1 þ p2Þn�1
� 1

2n
:

The total number of trees tn;k generated by G must be

equal to the total number of choices, without repetitions,

of k elements out of a set of n� 1 elements. In fact, this

corresponds to the placement of all of the k occurrences of

rules S ! Sa in a derivation with n� 1 occurrences of

rules of the form S ! Sa or S ! aS. This number is the

binomial coefficient n�1
k

� �
, satisfying the well-known

relation ðx1; x2 � 0Þ

ðx1 þ x2Þn ¼
Xn
k¼0

n� 1

k

� �
� xk1 � xn�k2 ; ð51Þ

which is used below.

We can now compute the expectations appearing in our

iterative method specified in (42). The expected number of

occurrences of the rule S ! Sa of G, computed on the basis

of distribution pT ðCÞ, is then
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EpT ðCÞfðS ! Sa; tÞ ¼
Xþ1
n¼1

Xn�1

k¼0

k � n� 1

k

� �
� p

k
1 � pn�1�k

2

ðp1 þ p2Þn�1
� 1

2n

¼
Xþ1
n¼1

Xn�1

k¼0

k � ðn� 1Þðn� 2Þ � � � ðn� kÞ
k!

� p
k
1 � pn�1�k

2

ðp1 þ p2Þn�1
� 1

2n

¼ p1

Xþ1
n¼1

ðn� 1Þ
Xn�1

k¼1

n� 2

k� 1

� �

� p
k�1
1 � pn�2�ðk�1Þ

2

ðp1 þ p2Þn�1
� 1

2n

¼ p1

Xþ1
n¼1

ðn� 1Þ
Xn�2

k¼0

n� 2

k

� �

� p
k
1 � pn�2�k

2

ðp1 þ p2Þn�1
� 1

2n

¼ p1

Xþ1
n¼1

ðn� 1Þ � ðp1 þ p2Þn�2

ðp1 þ p2Þn�1
� 1

2n

¼ p1

p1 þ p2

Xþ1
n¼1

ðn� 1Þ � 1

2n

¼ p1

p1 þ p2
� 1

22

Xþ1
n¼0

n � 1

2n�1
¼ p1

p1 þ p2
:

ð52Þ

In a similar way, we also derive EpT ðCÞfðS ! aS; tÞ ¼ p2

p1þp2

and, finally, EpTðCÞfðS ! a; tÞ ¼ 1. The above expectations

must be normalized by

EpT ðCÞfðS; tÞ ¼
X
�

EpT ðCÞfðS ! �; tÞ

¼ p1

p1 þ p2
þ p2

p1 þ p2
þ 1 ¼ 2:

ð53Þ

Using (52) and (53), we can compute one application of the
iteration in (42), providing the new probabilities

p̂GðS ! SaÞ ¼ 1

2
� p1

p1 þ p2
;

p̂GðS ! aSÞ ¼ 1

2
� p2

p1 þ p2
;

p̂GðS ! aÞ ¼ 1

2
:

Note that any further iteration does not change the solution.
We can then conclude that a local minimum of the cross-
entropy is attained for PCFG ðG; pGÞ if we set

pGðS ! SaÞ þ pGðS ! aSÞ ¼ 1

2
; pGðS ! aÞ ¼ 1

2
:

This results in the sentence distribution

pGðanÞ ¼ ðpGðS ! SaÞ þ pGðS ! aSÞÞn�1 � pGðS ! aÞ ¼ 1

2n
;

ð54Þ
and the attained value for the cross-entropy is

HðpCkpGÞ ¼ EpC log
1

pGðwÞ
¼ �

Xþ1
n¼1

1

2n
� log

1

2n
¼ 1

2
� 1

ð12Þ
2
¼ 2:

From the already mentioned information inequality, we have

that, for any distribution p defined over C, HðpkpGÞ �
HðpGkpGÞ. From (54), we also see that pG ¼ pC . Hence, in this

case, the local minimum for the cross-entropy HðpCkpGÞ is

also its global minimum and we have found the optimal

solution to our minimization problem.

7 ESTIMATION BASED ON LIKELIHOOD

MAXIMIZATION

In several of the applications discussed in the introductory

section, the estimation of a PCFG is usually carried out on the

basis of a finite sample, that is, a multiset, of trees or sentences

rather than on an infinite distribution. In this case, the

maximum-likelihood estimation (MLE) method is applied to

train a PCFG. We say that the method is supervised in case the

sample consists of trees; if, instead, the sample consists of

sentences with no structural annotation, we say that the

method is unsupervised. In this section, we briefly give an

overview of the MLE method both in the supervised and

unsupervised cases and show how the results in previous

sections also hold in these two cases.

7.1 Supervised Likelihood Maximization

We start our investigation of likelihood maximization

methods with the supervised case. Let T be a tree sample

and let T be the underlying set of trees, that is, set T only

contains all the trees that have at least one occurrence in T .

Note that T is not necessarily generated by a CFG. For t 2 T ,

we let fðt; T Þ be the multiplicity of t in T , that is, the

number of occurrences of t in T . We then define

fðA! �; T Þ ¼
X
t2T

fðt; T Þ � fðA! �; tÞ

and we let fðA; T Þ ¼
P

� fðA! �; T Þ. We can induce from
T a probability distribution pT , defined over T , by letting,
for each t 2 T ,

pT ðtÞ ¼
fðt; T Þ
jT j : ð55Þ

Note that
P

t2T pT ðtÞ ¼ 1. Distribution pT is called the

empirical distribution of T .

Again, we assume that the trees in T have internal nodes

labeled by symbols in N , root nodes labeled by S, and leaf

nodes labeled by symbols in �. Let R then be the finite set of

rules that are observed in T . Similarly to Section 3, we define

the skeleton CFG underlying T as G ¼ ðN;�; R; SÞ. Since G

generalizes the treebank, it might be the case that T ðGÞ is a

proper superset of T . Even if T ðGÞ ¼ T , it might be that no

consistent probabilistic extension pG of G, viewed as a

distribution over T , can exactly capture the distribution pT .

We wish anyway to approximate pT at our best through some

choice of pG.

In the MLE method, we probabilistically extend the

skeleton CFG G by means of a function pG that maximizes

the likelihood of T , defined as
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pGðT Þ ¼
Y
t2T

pGðtÞfðt;T Þ; ð56Þ

subject to the normalization conditions
P

� pGðA! �Þ ¼ 1
for each A 2 N . Such a maximization provides the estimator
(see, for instance, [23])

pGðA! �Þ ¼ fðA! �; T Þ
fðA; T Þ : ð57Þ

Let us now consider the estimator in (9) from Section 3.

If we replace distribution pT with the empirical distribu-

tion pT , we derive

pGðA! �Þ ¼EpT fðA! �; tÞ
EpT fðA; tÞ

¼
P

t2T
fðt;T Þ
jT j � fðA! �; tÞP

t2T
fðt;T Þ
jT j � fðA; tÞ

¼
P

t2T fðt; T Þ � fðA! �; tÞP
t2T fðt; T Þ � fðA; tÞ

¼ fðA! �; T Þ
fðA; T Þ :

ð58Þ

This is precisely the estimator in (57). We then conclude

that the MLE method can be seen as a special case of the

general estimator in Section 3, with the input distribution

defined over a finite set of trees. This also shows the well-

known fact that, in the finite case, the maximization of the

likelihood pGðT Þ corresponds to the minimization of the

cross-entropy HðpT kpGÞ.
Let Gp ¼ ðG; pGÞ now be a PCFG trained on T using the

MLE method. Again, from (58) and Section 3, we have that

Gp is a consistent PCFG. This result was shown first in [34]

and, later, with a different proof technique, in [23]. We can

also transfer the results of Sections 4 and 5, showing the

following relations for the supervised MLE method:

EpT fðA; tÞ ¼ EpGfðA; tÞ; ð59Þ

HdðpGÞ ¼ HðpT kpGÞ: ð60Þ

Relation (59) has already been proven for the MLE method in

[18, Proposition 3] but with a proof technique more complex

that the one we exploit in Section 4.3 Relation (60) was not

previously known for the MLE method and has essentially

the same meaning that has been discussed in Section 5 for the

case of infinite distributions. In the case above of a

distribution over a finite set of trees, we can choose between

the computation of the derivational entropy and the cross-

entropy, depending on the instance of the problem at hand.

As already mentioned, the computation of the derivational

entropy HdðpGÞ requires the solution of a linear system

specified by the relations in (19). This takes cubic time in the

number of nonterminals of the grammar. If this number is

large, direct computation of the cross-entropy against the

treebank might be more efficient. On the other hand, in cases

of very large treebanks, one might opt for direct computation

of the derivational entropy.

We now discuss a simple example with the aim of

clarifying the abovementioned theoretical results. For a

real number q with 0 < q < 1, let us consider the CFG G

defined by the two rules S ! aS and S ! a, and let

Gp;q ¼ ðG; pG;qÞ be the probabilistic extension of G with

pG;qðS ! aSÞ ¼ q and pG;qðS ! aÞ ¼ 1� q. It is not difficult

to verify that grammar G is unambiguous and consistent

and that each tree t generated by G has probability

pG;qðtÞ ¼ qi � ð1� qÞ, where i � 0 is the number of occur-

rences of rule S ! aS in t.
The derivational entropy of Gp;q can be directly com-

puted from its definition as

HdðpG;qÞ ¼ �
Xþ1
i¼0

qi � ð1� qÞ � log qi � ð1� qÞ
� �

¼� ð1� qÞ
Xþ1
i¼0

qi log qi � ð1� qÞ � logð1� qÞ �
Xþ1
i¼0

qi

¼� ð1� qÞ � log q �
Xþ1
i¼0

i � qi � logð1� qÞ

¼ � q

1� q � log q � logð1� qÞ:

ð61Þ

See Fig. 2 for a plot of HdðpG;qÞ as a function of q.

If a treebank composed of occurrences of trees generated

byG is given, the value of q can be estimated by applying the

MLE or, equivalently, by minimizing the cross-entropy. We

consider here several treebanks to exemplify the behavior of

the cross-entropy depending on the structure of the sample

of trees. The first treebank T contains a single tree t with a

single occurrence of rule S ! aS and a single occurrence of

rule S ! a. We then have pT ðtÞ ¼ 1 and pG;qðtÞ ¼ q � ð1� qÞ.
The cross-entropy between distributions pT and pG;q is then

HðpT ; pG;qÞ ¼ � log q � ð1� qÞ ¼ � log q � logð1� qÞ: ð62Þ

The cross-entropy HðpT ; pG;qÞ, viewed as a function of q, is a

convex-[ function and is plotted in Fig. 2 (line indicated by
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Fig. 2. Derivational entropy of Gp;q and cross-entropies for three different

corpora, plotted as a function of p.

3. In [18], the MLE method is treated as the problem of estimating a PCFG
on the basis of an input distribution p defined over a finite set of trees rather
than on the basis of a tree sample. There is no substantial difference between
these two settings since it is always possible to effectively construct a tree
sample T large enough such that the associated empirical distribution pT
and the distribution p are equal pointwise.



K ¼ 1, see below). We can obtain its minimum by finding a

zero for the first derivative

d

dq
HðpT ; pG;qÞ ¼

1

ln 2
� � 1

q
þ 1

1� q

� �
¼ 1

ln 2
� 2q � 1

q � ð1� qÞ ¼ 0;

ð63Þ

which gives q ¼ 1
2 . Note from Fig. 2 that the minimum of

HðpT ; pG;qÞ crosses the line corresponding to the derivational
entropy, as should be expected from the result in Section 5.

In general, for integers d > 0 and K > 0, consider a tree

sample T d;K consisting of d trees ti, 1 � i � d. Each ti contains

ki � 0 occurrences of rule S ! aS and one occurrence of rule

S ! a. Thus, we have pT d;K ðtiÞ ¼ 1
d and pG;qðtiÞ ¼ qki � ð1� qÞ.

We let
Pd

i¼1 ki ¼ K. The cross-entropy is

HðpT d;K ; pG;qÞ ¼ �
Xd
i¼1

1

d
� log qki � logð1� qÞ

¼ �K
d

log q � logð1� qÞ:
ð64Þ

In Fig. 2, we plot HðpT d;K ; pG;qÞ in the case K
d ¼ 1

2 and in the

case K
d ¼ 1:5. Again, we have that these curves intersect with

the curve corresponding to the derivational entropyHdðpG;qÞ
at the points where they take their minimum values.

7.2 Unsupervised Likelihood Maximization

In applications in which a treebank is not available, one might

still use the MLE method to train a PCFG in an unsupervised

way on the basis of a sample of sentences, also called a corpus,

with no structural annotation. In this section, we briefly

discuss the unsupervised ML estimator and the EM method

that is used to find a solution for such an estimator. We then

show how both this estimator and the EM method can be seen

as a particular case of the general relations provided in

Section 6 for distributions over infinite sets of strings.

Let C be a finite sample of sentences and let C be the

underlying set. Forw 2 C, we let fðw; CÞ be the multiplicity of

w in C. Assume a CFGG ¼ ðN;�; R; SÞ that is able to generate

all of the sentences inC and possibly more. The unsupervised

MLE method constructs a PCFG Gp ¼ ðG; pGÞ, where pG
maximizes the likelihood of C, defined as

pGðCÞ ¼
Y
w2C

pGðwÞfðw;CÞ; ð65Þ

subject to the normalization conditions
P

� pGðA! �Þ ¼ 1

for each A 2 N . The application of the usual Lagrange

multipliers method to the above maximization problem

provides the relations (see, for instance, [23])

pGðA! �Þ ¼
P

w2C fðw; CÞ � EpGð�jwÞfðA! �; tÞP
w2C fðw; CÞ � EpGð�jwÞfðA; tÞ

: ð66Þ

Since each pGðtjwÞ depends on the quantities pGðA! �Þ
(see the definitions of the probability of a tree and of a sentence

in Section 2), the relations in (66) should be viewed as a system

of jRjnonlinear equations in the unknowns pGðA! �Þ. Thus,

there might be several solutions to such a system. Each

solution of (66) identifies a point where (65) has null partial

derivatives, but this does not necessarily correspond to a local

maximum, let alone an absolute maximum. In practice, this

system is typically solved by means of an iterative algorithm

called inside-outside [28], [35], [36], which implements the

EM method [14], as discussed in what follows.

Starting with an initial function pG that probabilistically

extends G to a proper PCFG Gp ¼ ðG; pGÞ, a so-called

growth transformation [37] is computed, defined as

p̂GðA! �Þ ¼
P

w2C fðw; CÞ �
P

yðtÞ¼w
pGðtÞ
pGðwÞ � fðA! �; tÞP

w2C fðw; CÞ �
P

yðtÞ¼w
pGðtÞ
pGðwÞ � fðA; tÞ:

ð67Þ

Following [38], one can show that p̂GðCÞ � pGðCÞ, that is, the

growth transformation never decreases the value of the

likelihood of the sample. The EM method then consists of the

iteration of the growth transformation above, producing at

each step a new PCFG. This method halts when two

successive PCFGs provide values for the likelihood that

differ by a quantity below some preset minimum. In practice,

this happens when we have reached a local maximum for

(65). One could also view the EM method as a way of

approximating the solution of the system in (66) by applying

the already mentioned fixed-point iteration method for

systems of nonlinear equations [33, Chapter 4].

We now show how the above relations can be viewed as

particular cases of the relations in Section 6. We associate

with C a so-called empirical distribution, defined over C as

pCðwÞ ¼ fðw;CÞ
jCj . Let us consider now the estimator in (41) from

Section 6. If we replace distribution pC with pC, we obtain

pGðA! �Þ ¼
EpCEpGð�jwÞfðA! �; tÞ
EpCEpGð�jwÞfðA; tÞ

¼
P

w2C
fðw;CÞ
jCj � EpGð�jwÞðA! �; tÞP

w2C
fðw;CÞ
jCj � EpGð�jwÞfðA; tÞ

¼
P

w2C fðw; CÞ � EpGð�jwÞfðA! �; tÞP
w2C fðw; CÞ � EpGð�jwÞfðA; tÞ

:

ð68Þ

This is the estimator in (66). We then conclude that the

unsupervised MLE method can be seen as a special case of the

general estimator in (41), with the input distribution defined

over a finite set of sentences. Similarly, the growth transfor-

mation in (67) is a particular case of the iteration step specified

in (42) from Section 6. This also shows the already-known fact

that, at each iteration of the growth transformation, the cross-

entropy HðpCkpGÞ does not increase.

Similarly to what we have done in Section 6, we can also

extend the results of Section 5 to all of the PCFGs that are

obtained at each iteration of the EM method. Let T ðCÞ be

the set of all trees derived by G that generate a sentence in

C, that is, T ðCÞ ¼ ftjt 2 T ðGÞ; yðtÞ 2 Cg. We remark here

that set T ðCÞ may contain an infinite number of trees. This

may happen if G has infinite ambiguity, that is, if there are

cycles in the derivation process of the grammar such that

some sentences can be generated by G by means of

infinitely many trees. Now assume some probabilistic

proper extension Gp ¼ ðG; pGÞ of G such that pGðwÞ > 0

for every w 2 C. We define a distribution over T ðCÞ by
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pT ðCÞðtÞ ¼ pCðyðtÞÞ �
pGðtÞ
pGðyðtÞÞ

: ð69Þ

It is not difficult to verify that
P

t2T ðCÞ pT ðCÞðtÞ ¼ 1.

We now apply to Gp the estimator in (9) in order to

obtain a new PCFG Gp̂ ¼ ðG; p̂GÞ that minimizes the cross-

entropy between pT ðCÞ and pG. The estimator provides a

function p̂G specified by

p̂GðA! �Þ ¼
P

t2T ðCÞ pT ðCÞðtÞ � fðA! �; tÞP
t2T ðCÞ pT ðCÞðtÞ � fðA; tÞ

¼
P

t2T ðCÞ
fðyðtÞ;CÞ
jCj �

pGðtÞ
pGðyðtÞÞ � fðA! �; tÞP

t2T ðCÞ
fðyðtÞ;CÞ
jCj �

pGðtÞ
pGðyðtÞÞ � fðA; tÞ

¼
P

w2C fðw; CÞ �
P

yðtÞ¼w
pGðtÞ
pGðwÞ � fðA! �; tÞP

w2C fðw; CÞ �
P

yðtÞ¼w
pGðtÞ
pGðwÞ � fðA; tÞ

¼
P

w2C fðw; CÞ � EpGð�jwÞfðA! �; tÞP
w2C fðw; CÞ � EpGð�jwÞfðA; tÞ

:

ð70Þ

Again, this is exactly the growth transformation introduced

in (67).
From all of the above relations, we can then conclude that,

at any iteration of the EM method, the PCFG Gp̂ ¼ ðG; p̂GÞ
obtained by applying the growth function satisfies the

relation

HðpT ðCÞkp̂GÞ ¼ Hdðp̂GÞ; ð71Þ

where distribution pT ðCÞ is defined as a function of distribu-

tion pG through (69). Again, note that (71) can be viewed as a

particular case of (50). In particular, if p� provides a solution

for the estimator in (66), then, for the resulting PCFG

Gp� ¼ ðG; p�Þ, we haveHðpT ðCÞkp�Þ ¼ Hdðp�Þ, where, for each

t 2 T ðCÞ, we set pT ðCÞðtÞ ¼ pCðyðtÞÞ � p�ðtÞ
p�ðyðtÞÞ . This relation was

not previously known in the literature on the EM method.

8 APPLICATION TO FINITE STATE MODELS

HMMs and probabilistic finite automata are important
specializations of the class of PCFGs. A good introduction to
these models can be found in [15] and in [16], respectively.
Several other well-known language models, such asN-gram
models and stochastic k-testable automata, can be more
generally expressed as probabilistic finite automata; see,
for instance, [39]. All of these classes have several applica-
tions in natural language processing, speech recognition,
computational biology, computer vision, and several other
areas that make use of syntactic pattern matching methods
to model data. In this section, we introduce HMMs which
are equivalent to probabilistic finite automata [39], [40] and
show how the results presented in the previous sections of
this paper apply to this class as well.

Several variants of HMMs have been presented in the
literature. We discuss here HMMs with emissions on arcs
and follow the notation of [4]. An HMM Mp is defined by

1. a set Q ¼ fs1; . . . ; sNg of states,
2. an observation alphabet � ¼ fa1; . . . ; aKg,

3. a vector of initial probabilities �, having dimension
1
N ,

4. a vector of final probabilities �, having dimension
1
N ,

5. a matrix of transition probabilities A, having dimen-
sion N 
N , and

6. a matrix of emission probabilities B, having dimension
N 
N 
K.

Vector � is a stochastic vector, that is, its elements sum to

one. Matrices A and B satisfy the following normalization

conditions: For each i with 1 � i � N , we have

�½i	 þ
PN

j¼1 A½i; j	 ¼ 1; for each i and j with 1 � i, j � N ,

we have
PK

k¼1 B½i; j; k	 ¼ 1. To simplify the presentation

below, we make the following assumptions: State s1 is the

only initial state in the model, that is, �½1	 ¼ 1 (and,

therefore, �½i	 ¼ 0 for 2 � i � N). Furthermore, sN is the

only accepting state in the model and has no outgoing

transitions, that is, �½N	 ¼ 1, �½i	 ¼ 0 for every i with

1 � i � N � 1, and A½N; i	 ¼ 0 for every i with 1 � i � N .

We associate with Mp a distribution pM defined as

follows: Consider a string w ¼ b1 � � � bn, with n > 0 and

bi 2 �, 1 � i � n. A computation of Mp on w is a sequence

c ¼ ðsk0
; sk1

; . . . ; sknÞ such that ski 2 Q, 0 � i � n, sk0
¼ s1

and skn ¼ sN . We define

pMðcÞ ¼
Yn
i¼1

A½ski�1
; ski 	 �B½ski�1

; ski ; bi	: ð72Þ

Let �ðwÞ be the set of all computations of Mp on w.

Distribution pM is extended to strings in �� by letting

pMðwÞ ¼
P

c2�ðwÞ pMðcÞ.
An HMM can be transformed into a PCFG generating

the same language, with the same associated string

distribution and with the same number of statistical

parameters. Such a PCFG Gp ¼ ðG; pGÞ has nonterminal

symbols N ¼ fS1; S2; . . . ; SNg, corresponding to the states

in Q, start symbol S ¼ S1, and alphabet � equal to

the observation alphabet. The set of rules R and the

function pG are specified by pGðSi ! akSjÞ ¼ A½i; j	 �
B½i; j; k	 and pGðSN ! "Þ ¼ 1. Note that the abovemen-

tioned PCFG has rules with a single occurrence of a

nonterminal in the right-hand side, always placed at the

rightmost position. This restricted type of PCFG is called

right-linear PCFG and can only generate languages that

are regular [19].

Given a sample of sentences, the HMM probabilities are

usually estimated through the unsupervised MLE method

by applying the Baum-Welch algorithm [38], [3], which is

based on the already mentioned EM framework. Using the

above transformation to PCFGs, we can then transfer to the

class of HMMs the results presented in Section 7.2. This is

discussed in what follows.

As already observed above, HMMs are a particular case

of PCFGs in the so-called right-linear form. This simplifies

many of the relations that have been presented in the

previous sections of this paper. For instance, the relations

developed in (25) for the computation of the derivational

entropy of a PCFG can be applied to the HMM case as
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follows: First of all, the linear system in (19), used to express

the expectation of a nonterminal according to tree distribu-

tion pG, can now be adapted to express the expectation of a

state si 2 Q. We define a 1
N vector EQ, with each

EQ½i	 ¼ EpMfðsi; cÞ. Here, c denotes a computation of M for

some string and fðsi; cÞ denotes the number of occurrences

of state si in c. Under the simplifying assumptions given

above, the following relation specifies a system of N linear

equations in the N unknowns EQ½i	:

EQ ¼ �þ ET
Q 
A; ð73Þ

where ET
Q indicates the transpose of EQ. Similar to (3), for

each state si 2 Q, we define the state entropy as

HsiðpMÞ ¼ �
XN
j¼1

XK
k¼1

A½i; j	 �B½i; j; k	 � logðA½i; j	 �B½i; j; k	Þ

¼ �
XN
j¼1

A½i; j	 �
 

logðA½i; j	

þ
XK
k¼1

B½i; j; k	 � logB½i; j; k	
!
:

ð74Þ

Let HQðpMÞ also be a 1
N vector, with each HQðpMÞ½i	 ¼
HsiðpMÞ. Vector EQ obtained as the solution of the system

in (73) can now be used to compute the derivational

entropy of the HMM, by means of the relations

HdðpMÞ ¼ ET
Q 
HQðpMÞ. This relation should be viewed

as a specialization of (25) to HMMs.

Now consider the case of a (finite) sentence sample C
with underlying set C. Call M̂ the HMM induced at some

generic step by the standard Baum-Welch algorithm and

let pM̂ be the associated distribution, defined over strings

in ��. We also write �ðCÞ to denote the set of all

computations of M̂ on some string in C. Following

Section 7.2, we define an empirical distribution over C as

pCðwÞ ¼ fðw;CÞ
jCj and then define a distribution over the

computations in �ðCÞ as p�ðCÞðcÞ ¼ pCðyðcÞÞ � pM̂ ðcÞ
pM̂ ðyðcÞÞ

, where

yðcÞ denotes the string accepted by the computation c.

This relation parallels (69). We can then apply the results

of Section 7.2, transferring relation (71), and conclude

that, at each iteration of the Baum-Welch algorithm, we

have the equality HdðpM̂Þ ¼ Hðp�ðCÞkpM̂Þ. In particular,

this holds for the HMM obtained as the result of the

unsupervised MLE on sample C. This result was not

previously known in the literature on HMMs.

We conclude this section with some remarks. A parallel

result can also be stated for the case of unsupervised ML

training of the class of probabilistic finite automata men-

tioned at the beginning of this section. This just requires the

transfer of the abovementioned relations to the notation used

for probabilistic finite automata and, therefore, is not

reported here. Under a more general setting, HMMs and

probabilistic finite automata can also be used to approximate

more expressive probabilistic language models, for instance,

PCFGs [41], [17]. In order to do this, we can view the more

expressive model as providing a distribution defined over an

infinite set of strings and train the HMM using the criterion of

cross-entropy minimization. In these cases, we can then

transfer the results presented in Section 6 and obtain a relation

which parallels the preceding one.

9 CONCLUDING REMARKS

PCFGs are generative devices widely used nowadays in

several areas, including natural language processing,

speech recognition, and computational biology. The pro-

blem of the empirical estimation of these grammars has

been traditionally defined for finite samples of trees or

sentences. In this paper, we have generalized such a setting

to infinite distributions over trees or sentences. This has

applications in cases where PCFGs are used to approximate

other devices that are generatively more powerful. Further-

more, under a theoretical perspective, this general setting

has been used to prove some previously unknown proper-

ties of PCFGs trained over finite distributions.
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