Let M be a connected Riemannian manifold without boundary with Ricci curvature bounded from below and such that the volume of the geodesic balls of centre x and fixed radius r > 0 have a volume bounded away from 0 uniformly with respect to x, and let (T(t))(t >= 0) be the heat semigroup on M. We show that the total variation of the gradient of a function u is an element of L-1 (M) equals the limit of the L-1-norm of del T(t)u as t -> 0. In particular, this limit is finite if and only if u is a function of bounded variation.

Heat semigroup and Functions of Bounded Variation on Riemannian Manifolds

PARONETTO, FABIO;
2007

Abstract

Let M be a connected Riemannian manifold without boundary with Ricci curvature bounded from below and such that the volume of the geodesic balls of centre x and fixed radius r > 0 have a volume bounded away from 0 uniformly with respect to x, and let (T(t))(t >= 0) be the heat semigroup on M. We show that the total variation of the gradient of a function u is an element of L-1 (M) equals the limit of the L-1-norm of del T(t)u as t -> 0. In particular, this limit is finite if and only if u is a function of bounded variation.
File in questo prodotto:
File Dimensione Formato  
articolo_crelle.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 224.75 kB
Formato Adobe PDF
224.75 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/144434
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
  • OpenAlex ND
social impact