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Heat semigroup and functions of bounded
variation on Riemannian manifolds

By M. Miranda Jr., D. Pallara and F. Paronetto at Lecce, and M. Preunkert at Tiibingen

Abstract. Let M be a connected Riemannian manifold without boundary with Ricci
curvature bounded from below and such that the volume of the geodesic balls of centre x
and fixed radius r > 0 have a volume bounded away from 0 uniformly with respect to x,
and let (7(¢)), be the heat semigroup on M. We show that the total variation of the gra-
dient of a function u € L'(M) equals the limit of the L'-norm of VT'(¢)u as t — 0. In par-
ticular, this limit is finite if and only if u is a function of bounded variation.

Introduction

Functions of bounded variation in R" are by now deeply studied, and the spaces BV
are a well-established tool for studying variational problems, often with some geometric
flavour. This is due to the possibility of having discontinuities along (n — 1)-dimensional
surfaces, which is not the case for functions in Sobolev spaces. In fact, a very important
particular case of BV functions are characteristic functions of sets with finite perimeter in
the sense of Caccioppoli-De Giorgi, the most natural class of sets where the isoperimetric
problem can be formulated and solved. After various attempts to generalise to R” the clas-
sical notion of BV functions of only one real variable, the new idea that opened the way
for the modern theory was the definition proposed by E. De Giorgi in [11]. It is based
upon a regularisation with a Gaussian convolution kernel and can be rephrased using the
heat semigroup (7(¢)),., in R" as follows. Given a function u € L'(R"), define its variation

by

(1) [Dul(R") = lim VT (2)u] e

and say that u has bounded variation, u € BV (R"), if |Du|(R") is finite. It has been shown
in [11] that u has finite variation if and only if its distributional gradient is an R"-valued
measure with finite total variation (in the sense of measures) given by |Du|(R"). As a con-
sequence, we have the equality

(2) |Du|(R") = sup{ [udivgdx:ge € (R |gll., < 1}.
Rﬂ
Brought to you by | Biblioteca del (Biblioteca del)
Authenticated | 172.16.1.226
Download Date | 4/2/12 9:22 PM



100 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds

This last formula, first used in [21], defines directly BV functions, and can be easily gener-
alised to Riemannian manifolds (see (1.4) below). By the way, let us just mention that fur-
ther characterisations of BV functions are available, which can be used in even more gen-
eral contexts, such as metric spaces endowed with a doubling measure (see e.g. [22], [2]).
Moreover, notice that further connections between isoperimetric inequalities and the heat
semigroup have been pointed out, even in non-euclidean contexts, such as Gaussian spaces
(see e.g. [2] and also [23]).

In this paper, we address the question whether equality (1) holds on a connected
Riemannian manifold M, where the left-hand side is defined as in (2), see (1.4), and in the
right-hand side the heat semigroup on M is used. The answer is affirmative, at least under
some geometric hypotheses, see (H1), (H2) below. We require that the Ricci curvature of
M is bounded below, and that the volume of the (geodesic) balls of a given radius is
bounded below by a constant independent of the centre. These assumptions bound the ge-
ometry of M in two opposite directions, see Remarks 1.2 and 1.3, and in fact both hold
trivially for compact manifolds, and more generally for manifolds of bounded geometry.
Moreover, (H1) and (H2) imply the uniqueness of the bounded solution of the Cauchy
problem for heat equation. We deeply use hypotheses (H1) and (H2) and some of their rel-
evant consequences, such as the Sobolev embedding and the induced regularity of the heat
semigroup (see e.g. Theorem 2.1 and Theorem 2.6). We point out that we have used two
different approaches for the proof of Theorem 2.6; in the compact case we get a direct
proof as in [5], whereas in the non-compact case we have used Gaussian estimates, that
hold true under assumptions (H1) and (H2) (see Subsection 1.1).

It seems to be worth mentioning that the equality

lim ALLIVT(f)u(X)Id#(X) = [Du|(M)

yields an approximation in variation of BV functions by regular functions. An approxima-
tion result of this kind can be shown on general manifolds using a partition of unity argu-
ment and the corresponding result on R” (see Proposition 1.4 below), and in fact we also
use this as an intermediate result, but we point out that the approximation given by the
heat semigroup is global and intrinsic.

The main steps in our proof are two. First, we show that the limit in (1), with M in
place of R", exists (this is trivial in R"” by monotonicity with respect to time), and then, we
show that the value of the limit is the variation of u defined in (1.4).

Acknowledgements. We are grateful to Prof. G. Huisken, R. Vitolo and G. Manno
for several useful conversations, and to the anonymous referee for a suggestion that simpli-
fied Section 2.1.

1. Notation and preliminaries

In this section we recall some basic facts concerning Riemannian manifolds and So-
bolev and bounded variation functions.
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Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds 101

1.1. Riemannian manifolds and geometric hypotheses. The framework of this paper
is given by an n-dimensional manifold M (not necessarily compact) without boundary, i.e.,
oM = 0, with n > 2, verifying the geometric hypotheses (H1), (H2) stated below in this
subsection. We start by fixing some notation. We denote by TM and T*M the tangent
and co-tangent bundles of M, respectively. Given a vector bundle E, we denote by I'(E)
the smooth sections of E; in particular, 7,7 (M) = C((T*M)? x (TM)?) is the space of ten-
sors of type (p,¢) on M, I'(TM) is the space of vector fields on M and I'(T*M) is the space
of 1-forms on M.

The Riemannian structure on M is defined by a symmetric metric tensor g € 7 (M).
The metric g defines an isomorphism i : ['(7M) — I'(T*M) in such a way that for any
Xel(TM),

(X)(Y)=9¢9(X,Y), YYel(TM).
Using the map i, it is possible to define the tensor g € %O(M ) through
go',0®) = g(i" o', w?),

where i! : T(T*M) — T'(TM) is the inverse of i. This tensor defines an inner product on
['(T*M) such that the map i becomes an isometry.

For X e Tx\M and w € T} M, we set

X[ = Ve(X, X), o = Vij(o,).

We denote by <-,-» and by | - | the inner product and the norm induced by the metric g on
any tensor T of type (p, ¢) in order to satisfy

\T| =<T, TY"? =sup{T(X1,.... Xp,00',...,00) : | Xi],..., X, |0, ..., |0 < 1}.

A vector bundle E such that the fibres are endowed with an inner product is called a Rie-
mannian vector bundle. If M is not compact, given a general Riemannian vector bundle E,
we denote by I'.(E) the smooth sections of E with compact support, and by I'y(E) the clo-
sure of I'.(E) with respect to the norm

1Tl = sup{|T(x)| : xe M}, T el(E).
Of course, if M is compact then I'o(E) = I'.(E) = I'(E).

The Riemannian metric g induces a geodesic distance d on M ; we always assume that
the metric space (M, d) is complete. Moreover, we denote by B,(x) the geodesic open ball
centred at x € M and with radius r > 0. In this setting, there is a natural way of defining a
measure u on M, also without assuming M orientable; the measure u is given in local co-
ordinates by

du = +/detgdx.

ByV:7/(M)— Z/’“ (M) we denote the Levi-Civita connection on M, that is the unique
connection compatible with the metric g, in the sense that
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102 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds
X(T,S) = (VxT, Sy +(T,VyS), VT,SeTL(M).
Here the notation Vy 7 € 7./ (M) means that
(VxT)(X1,..., X, 0", ... 07 = (VI)(X, X1,..., Xy, 0, ... 0f).

The Levi-Civita connection is a torsion-free connection which induces the Riemann curva-
ture tensor R € 7;*(M) defined by

R(X, Y, W,Z) = (VyVy W = VyVx W —Viy W, Z)>, VX, Y,W,ZeT(TM).
We denote by Ric the Ricci tensor of type (2,0) defined pointwise by

n
Ric(X,Y)=> R(X,e;, Y,e;), VX,YeT M,
i=1

where {¢;} is an orthonormal basis of 7M. The connection V on a function u simply de-
fines the covariant derivative of u, i.e.,

Vu = i(gradu),
where grad is the standard gradient defined using local coordinates.
We denote by div: 7,/(M) — 77 ~1(M) the operator defined using the formula

A£<VT, S>du = _A£<T, divSydu, VT eZ) ™' (M),¥Se T (M).

In this way, given a function u € € (M), the Laplace-Beltrami operator applied to u is de-
fined by

Au = div Vu;
notice that the operator defined above is negative definite. The Hessian of a function

ue€* (M) is given by the tensor Hessu = V?u € 7;*(M). Finally, we recall the Bochner-
Lichnerowitz-Weitzenbock formula; for any u € (M),

1
(1.1) §A|Vu|2 — |Hess u|” + (VAu, Vi) + Ric(Vu, Vu).

In the whole paper, we consider Riemannian manifolds satisfying the following two hy-
potheses:

(H1) There exists K = 0 such that Ric = —K, i.e.,
Ric(X,X) = —K|X|>, VX e[ (TM).
(H2) There exists v > 0 such that

xigi{;ﬂ(Bl (x)) = v.
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Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds 103

Hypothesis (H1), in particular, implies that the metric measure space (M,d,u) is
locally doubling. Indeed, Cheeger, Gromov and Taylor [7] (see also Hajtasz and Koskela
[17], Section 10.1) proved that for every x € M and for every R > 0

(1.2) w(Bar(x)) < 2"exp{2R\/(n — 1)K }u(Bg(x)).

The local doubling condition implies the following growth bound for the measure of
balls.

Lemma 1.1.  Assuming (H1), for every x € M and 0 < r < R the inequality

o R\" /4R (n—DK
r e?r

#(Br(x))

u(By(x))

lIA

holds.
Proof- Choose j € N such that
27y < R<2r;
as an immediate consequence, we have that j satisfies the inequality

. 2R
27 < —.
r

Iterating the local-doubling condition (1.2), since Bg(x) = B,;,(x) we obtain that
1(Br(x)) = 1(Buy(x)) = 2" exp{2/ry/Tn = DK (B 1,())
. J
<2 exp{rz 2k /(n — I)K},u(Br(x))
k=1

<o (g) exp{2r/(n — DE(2 — 1)}u(B,())
<2" <1:>" exp{2ry/(n — 1)K(2R/r — 1)} u(B:(x))

and the desired estimate follows. []

Remark 1.2. Condition (H2) together with Lemma 1.1 gives the following uniform
lower bound for balls of a given radius 0 < ¢ < 1:

n
. 0
inf u(B,() (2) exp{ (20— 4)y/ (1= DK},
where v is the constant in (H2). Moreover, by Lemma 1.1 a manifold M satisfying (H2) is
compact if and only if p(M) is finite.
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104 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds
Moreover, for a suitable constant ¢ > 0, the volume growth estimate

(1.3) 1(B,(x)) < co"e”
holds for all x e M, o > 0.

Remark 1.3. A counterpart of the previous remark directly follows from hypothesis
(H1); in fact, see e.g. [12], Theorem 3.98, for every x e M

0* +o(o? )) ,

where s(x) is the scalar curvature at x € M, i.e., the trace of the Ricci curvature. This, to-
gether with (H1), implies that there are Ry > 0, ¢ > 0 such that for every x € M and every
0< o< Ry

ﬂ(Bg(x)) < co".

1.2. Sobolev spaces and functions of bounded variation. In this subsection we recall
the definition and the basic properties of Sobolev spaces and functions of bounded varia-
tion on a manifold. We refer to [18] for more information on Sobolev spaces on manifolds,
and to [1] for a discussion of BV in the Euclidean setting.

For 1 £ p < o0 and k € N, we denote by H*?(M) the completion of the space

k ' 1/p
CLM) = {u e 6 (M) : lully, == llull, + _Z]<AJ;|V-’L¢|” d,u> < —i—oo}
iz

with respect to the norm || - [[; .

Given a function u € L'(M), define the variation of u by

(1.4) |Du|(M) = sup{ Judivodu: weT(T*M),|o| < 1}.
M

A function u € L' (M) has bounded variation, u € BV (M), if |Du|(M) < +oo. Notice that
H"“!'(M) = BV(M). A function u € BV (M) defines an element Du e (Uo(T*M))’, the dual
space of I'o(7*M); in fact, the map

u— (Du,0) :=— [udivodu, YoeT (T*M),
M

is well defined and, thanks to condition |Du|(M) < 40, can be extended by continuity to
the whole space I'o(7*M). This dual space, unlike the Euclidean space, cannot be naturally
identified with a vector valued measure space; what is possible to say, is that a BV function
u defines, as in the Euclidean case, a finite measure |Du| and a |Du|-measurable section
o, : M — T*M with |g,| = 1 almost everywhere and such that the distributional derivative
Du of u is given by

(Du,w) = [{o,,w)d|Du|, Yo el (T*M).
M
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Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds 105

A measurable set £ = M has finite perimeter if |Dy| is finite, where we denote by y its
characteristic function. We denote the perimeter of E in a Borel set 4 by

(1.5) P(E, 4) = |Dygl(4).

Assumptions (H1) and (H2) are crucial in the context of H*” and BV spaces. In fact,
under assumption (H1), condition (H2) is equivalent to the Sobolev embedding
H'“"W(M)c LY(M), 1/q—1/p=1/n, BV(M) < L""=D(M), see [25] and also [18], Theo-
rem 3.3. As a consequence of the last embedding, the following isoperimetric inequality
holds:

(1.6) min{u(E), u(M\E)} < ¢;P(E, M)

for every E < M and for some constant ¢; > 0 depending only upon n, K, v. If we replace
(H1) by Ric = 0, the situation is simpler. In particular, by [7], « is doubling and then by [6],
the isoperimetric inequality and the Sobolev embedding hold and (H2) follows (see also
[17], Section 10).

We recall that, since for every w € I'.(T* M) the map
u— [udivodu
M
is continuous with respect to the L'(M) topology, then the map
u v+ |Du|(M)

is L'-lower semi-continuous. Obviously, it is impossible to approximate BV function in
norm by smooth functions: what can be done is to get an approximation in variation. This
is well-known in the Euclidean setting (see e.g. [1], Theorem 3.9) and can be adapted to
manifolds via a partition of unity argument. Notice that the following statement is true
also without hypotheses (H1) and (H2).

Proposition 1.4.  For every u e BV(M) there exists a sequence (f;); = € (M) such
that f; — win L'(M) and

(1.7) Dul(M) = Jim [V

Proof. We fix some notation; given an open set V', for 7 > 0 we define the following
sets:

Vi={xeM :dist(x,V) <t}, Viy={xeM:dist(x, V) >t}

If M is compact, we may take ¢™ instead of %, and we don’t need the following state-
ment. If M is not compact, let us prove the following

Claim. For every ue BV(M) and for every &> 0 there exists a function
u, € BV (M) with compact support in M such that

llu — ”e”Ll(M) <eé& |Dul|(M) < |Du|(M) + e.
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106 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds

In fact, if we fix ¢ > 0, there exists a relatively compact open set B such that

2
[ luldu<e, | luldu<, |Dul(M\B) <
M\B B#\B 2

moreover, we can consider (e ¥* (M) with 0<( =<1, (=1 on B, supp{ < B* and
|V{| < 2/e, and take u, = (u. For such a function we have

[lu—uldu < [ |uldu<e,
M M\B
and, if w e I'.(T*M) with |w| < 1, then
Ju.divodu= [udiv(lw)du— [ ulw, V() du.
M M B\B
Since {w € T'.(T*M) and |{w| < 1, we obtain that
[ diveodu < |Dul(M) + | Jul|<w, VO] du < [Dul(M) + .
M BA\B

This in particular implies that u, € BV (M) and
|Dug|(M) < [Dul|(M) + &
and the claim follows.

Given u € BV (M) with compact support, we consider a finite family of open bounded
sets (U;),—; .y with the following properties:

(1) UnU=0fori=+j.

(2) 37 such that for every 0 < 7 < 7 the family U;" covers the support of « and U is
contained in a coordinate chart (V;, ;).

(3) |Du|(0U;) =0 for all i.

(4) T*(U") ~ U x R" and di; is an isometry between T}(M) and R”" for every
xe U

For every fixed ¢ > 0, we take 0 < # < 7 in such a way that
N
|Du|(M\U,) <&, where U, = |J Ui,.
i~
Let us show that for any i = 1,..., N we can find a function f; € ¥ (M) satisfying

_r e . m, &
(1.8) UL'” ledﬂ<2N, [}I;IVﬁldﬂ<|Du|(U,)+N-

i

In fact,
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|Du|(U") = sup{ [ udivwdu,|o| < 1,sptw cc Ui”}.
Uy

Setting w; = g(w,dx’) and V" = ,(U/"), from

divw =

divg: (/det gw)

1
\/detg
we get

|Du|(U") = { [ (voy;)div(y/detgw)dx,|w| < 1,we Cfo(Vl”)} =:|D(voy)l,
V[’I

for every v € BV(U/"), where 1 = \/detg(y;) and we denote by |Dv|, the total variation of
v in the weighted space BV;. The classical approximation result (see e.g. [1], Theorem 3.9)
can be extended to weighted spaces, as shown in [4], Theorem 3.4, and the existence of the
fi as in (1.8) follows.

If ¢; is a partition of unity of suppu subordinated to the open covering U with
Vo, < C/n, we define

N
f= 2‘P;fi§
the function f is a smooth function with
N
f=0 onM\| U/,
=1
thatis /' € 6.7 (M). Clearly
[lu—flde= | Ifldu+d | cﬂllu—f!dﬂ<22 [lu— fildu < ne.
M M\supp u i=1suppu i=1 U’i
Moreover, for x € 4;, = U\ U, ,, we denote by
Ii)={je{l,....,N}: j+ i, U'nU" £ 0},
I'(x)={je{l,....,N}:xe U},
L(x) = I'(x)\{i} = I(i).
Using this notation, we have that

Voi(x) = = > Vo,(x),

Jeli(x)
whence
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108 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds

Vi) = 2 (V) + X (fi(x) = filx)) Ve, (x)

jel'(x) Jei(x)

N
and then, since supp f\U, = J 4, ,
i=1

IIVfIdﬂ< IIVfId/HrZ J IVfldu

Uy 14,

gﬁ f!Vf\d/HZ > I%Wf!dwz S 1 — fil Vol du

i=ljel(i) A, i=1jel(i) A,

< IDAl(U) +e+> Y [ VHdu2SS Y [ 1 uldu

i=1jel(i) 4;,nU N i=1jel(i)4;,04;,

2CN X

N €
< DU (U,) o+ N (1Dul(ig) + 3 )+ 2SS Tl il d
i= i=l4;,

< |Du|(U,) + 26 + N?|Du|(M\U,) + 2CNe. [

2. The heat semigroup on M

In this section, after sketching the construction of the heat semigroup on the mani-
folds we are considering and recalling some of its properties, we derive some pointwise
bounds on the heat kernel and its derivatives. We refer to [9] for the missing proofs, unless
otherwise stated. Consider the Dirichlet form

D(u,v) = [{Vu,Vo)du
M

with domain H'2(M). It defines the operator A,, that on smooth functions coincides with
the Laplace-Beltrami operator A, defined as follows:

—MNu=f <& Duv) ffvd,u, Voe L*(M).

Since A, is self-adjoint and nonpositive on L?(M), it generates a strongly continuous, pos-
itive, contractive and analytic semigroup (T 5(1)) ;=0 0 L*>(M), which extrapolates to a
positive strongly continuous contractive semigroup (7,(z)) sp On LP(M), 1 = p < +oo,
which is even analytic for p > 1. The generator of (7,()),, is denoted by A,, and the
semigroup gives the solution u(z, x) = T(¢) f(x) of the Cauchy problem

o = Ayu, t>0,xeM,
u(0,x) = f(x), xeM.

The case p =1 is more delicate, and requires (H1). Analyticity was first proved by N.
Varopoulos [25] without calculating the angle of sectoriality. With stronger hypotheses on
the curvature (see Theorem 2.1 below) it was E. B. Davies [10] who obtained the angle /2.
We state the following theorem.
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Theorem 2.1. If M is a complete Riemannian manifold satisfying (H1), then the heat
semigroup (T (1)) />0 18 analytic on LY (M). In addition, if the curvature of M is positive out-
side some compact subset of M, then it even holds that (T(l)) >0 s bounded analytic on
LY(M) with angle /2. -

It is also important to point out that the heat semigroup has the following integral
representation; for any u € L' (M),

T(u(x) = | p(x, y, u(y) du(y),
M
where the heat kernel 0 < p e €* (M x M x (0,+00)) verifies always the condition
Aip(x, y, ) du(y) =1,

for every x € M, t > 0, but in our setting the equality | p = 1 holds. This last condition is
M

known as stochastic completeness and, in particular, is equivalent to the uniqueness of
bounded solutions of the Cauchy problem for the heat equation (see e.g. [15]).

We also point out that some results on the heat equation for differential forms can be
found in [19], [8].

2.1. Gaussian estimates for the heat kernel in the non-compact case. In this section
we discuss some further properties of the heat kernel in the case where M is a non-compact
manifold. We deduce inclusion (2.9) in Theorem 2.6 from the integral estimate (2.7), which
is derived in [14], even though not explicitly stated as a consequence of the on-diagonal es-
timate (2.6). We are indebted to the referee for this observation, that allowed us to simplify
the original treatment.

We start with the following definition (see Grigor’yan, [13], Definition 1.1).

Definition 2.2. A A-isoperimetric inequality is valid for a region Q < M if for every
subregion D < Q the inequality

(2.1) 21(D) = A(u(D))

holds, where 4;(D) is the first Dirichlet eigenvalue of D and A is a positive decreasing
function.

The validity of isoperimetric inequalities on Riemannian manifolds is closely related
to the validity of Gaussian estimates for the heat kernel. More precisely, Grigor’yan proves
in [13], Theorem 5.2 the following estimate.

Theorem 2.3. Suppose that in any ball Br(x) of a fixed radius R >0 the
A-isoperimetric inequality holds with the function A = A, g defined as follows:

Ay r(v) = a(x,R)v",

where a(x, R) > 0, v > 0; then for all x, y € M, for every t > ty > 0,
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110 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds

cyexp{i(ty — 1)}
min{z, R?} 1/ (a(x, R)a(y,R))

1+1/v )

d(x, )’ d(x, y)

B ek S e _ 2\
< + p exp 7 ,

where . = A (M) is the spectral radius of the manifold M, i.e.,

(2.2) plx, 1) < T3

il (M) = QICIlch /11 (Q)

In the same paper, Grigor’yan also proves that an isoperimetric inequality implies the
A-isoperimetric inequality. More precisely, in [13], Proposition 2.4 it is proved that if for
any D < Q the inequality

(2.3) Area(dD) = g(u(D))

holds, for a function ¢ : (0,+00) — (0,400) such that g(&)/¢ is decreasing, then the
A-isoperimetric inequality holds for the region QQ with

-4

Starting from these considerations and since the isoperimetric inequality (1.6) holds, we can
state the following proposition.

Proposition 2.4. Let M be a non-compact Riemannian manifold satisfying (H1) and
(H2); then for every 0 < t <1 and x, y € M, the following Gaussian estimate holds:

1+n/2 P
G d(x, y)2 d(x,y)
< 2 _aeWwm )
(2.4) p(x,3,0) < i (1 + exp 1 (

t

where cg = ¢(n, K, cy) is a constant depending only on the dimension n of the manifold M, the
bound K of the Ricci curvature and the isoperimetric constant cy.

Proof. Since, by Remark 1.2, u(M) = +o0, we can apply (2.2) with an arbitrary
R > 1 and then the isoperimetric inequality (1.6) reduces, for bounded sets £ = M, to

W(E) < ¢/ P(E, M)"" 1.

This last inequality is exactly (2.3) with

g9(&) = <§>ll/n-

Then Bg(x) admits a A-isoperimetric inequality with

572/n

2 2/n°
4c;
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hence, (2.4) follows from (2.2) witht < 1,20 =t/2, v=2/n, a(x,R) = 1/(4c§72/") =:a and

212¢, exp{l/2
G = an/FZ){ / } 0

We are now in a position to deduce an integral estimate from Proposition 2.4.

Proposition 2.5. Let M be a non-compact Riemannian manifold satisfying (H1) and
(H2); then for every 0 < t < 1 there exists ¢ > 0 such that for every y € M

(2.5) JIVp(x. y, 0] du(x) < %

Proof. Notice that for x = y inequality (2.4) reads

cG
(2.6) p(x,x,t) < 2

from which (see [14], Section 3) the integral estimate

d*(x, y) ¢
2 9
(2.7) Anyp(X, ¥,1)] exp{m} dp(x) = (/241

follows for all y e M, 0 < ¢t < 1, for suitable ¢ > 0, D > 2. Using the Cauchy-Schwarz in-
equality, we obtain

Dt
« AI[exp{— d2(1§; y)} du(x)

¢ d*(x, )
= t"/—ZHAJ; EXP{_T} du(x).

2 2 x
( TV, 3,0) dﬂ(x)> < [Wpler z>|2exp{M} ()

To conclude, let us now show that

d*(x, y)
———=5d < er"?
geXp{ Dr } wx) ¢
follows from the volume growth estimate (1.3). The proof is based on the same argument as
n [16], Section 5.3, and is presented for completeness. To our end, it suffices to prove that
there exists ¢ > 0 such that for every y e M

[ exp{—di(x, y)*}du,(x) S ¢, VyeM,
M

where we have introduced the metric tensor ¢, = (Dt)_lg, with associated
distance d, = (Dr)”"*d and measure du, = (Dt) "% du. For the measure U, since
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112 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds

Br(y) ={x:di(x,y) < R} = By (),

by Lemma 1.1 the inequality

‘ n [ aryDr\V DK
(2.8) e (Bg(x)) §2n<£) <e4 \/_>
:ut(B)t(x)) r le\/E

holds for every y € M and 0 < r < R. Then, setting B = B (), with R the radius coming
from Remark 1.3, we can write

o0
M=BulJ 4;
=0

where
4; = BE.MRO (y)\Bé,'RO(y)-
For x € 4; we have that 2/ Ry < d(x, y) < 2/ Ry, and then
exp{—d(x, )’} < exp{—2YR};

as a consequence, using (2.8) we obtain that

/if exp{—d;(x, »)”} du,(x)

||/\

w,(4)) exp{—27 R3}
1,(BS 1, (1)) exp{—27 R}
1,(B) exp{ —2% R2}2"+2) exp{2/3 Ro/(n — 1)Kt}
= 1t,(B) exp{—4/R% + 27> Ro\/(n — 1)Kt 4 n(j +2) In2}
= w(B)aj,

where a; = a;(n, K) are numbers depending only on the indicated parameters. A direct cal-
culation gives that

lIA

lIA

o0

Yaj < o,
j=0

and then we have

Ag exp{—d,(x, )’} dp,(x)

= Jexp{—d(x, )"} du(x) + i Jexp{di(x. )"} du(

< 1)1 v 7).

and then the assertion follows since by Remark 1.3 it holds that
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1(B) = "By, () < R

forevery t < 1. [

2.2. Regularity of the heat semigroup. In this subsection we investigate important
regularity properties of the heat semigroup.

Theorem 2.6. Under hypotheses (H1), (H2)
(2.9) D(Ay) = H“' (M),
(2.10) AT(t)ue H"Y(M), Vt>0,ueL'(M).

Proof. If M is a compact manifold the proof is achieved either by duality relying on
[24], Théoreme 4.2, or by the same direct argument as in [5], which we sketch below. As-
sume n = 3 at first, let Tx(y) = (—k) v (¥ A k) be the truncation function, and let us denote
by {u < k} the set {x € M : u(x) < k}. Multiplying the equation u — Au = f by Tj(u) and
using the divergence theorem, for f' e L'(M) we obtain

(2.11) | IVTe()* dpe < k|l f | any
{ll<k)

By the Sobolev embedding we know that

(jmwr a) =( W aeeiuzo)

{lul <k}

< o[ VT du,
M

(where 2* = 2n/(n — 2)) whence, using (2.11), we deduce

(2.1 ({2 4y <
' = = fen/(n=2)

which is true for every k. Now we come to the gradient estimate. Using (2.12) and (2.11) we

get

1
p({|Vul 2 4}) = p({lu] 2 k}) +— J |Vul? dp
2 (il <ky(1vul 22}

n/(n— 2
L2 Ky
Jen/ (n=2) 22 b

Sc——F—
which is true for every k >0, 1> 0. Minimising over k we find a constant C such
that pu({|Vu| = A}) £ CA""V for every />0, and therefore |Vu|e L?(M) for all
p<n/(n—1). If n=2, the same argument can be used, with an arbitrary exponent
1 < ¢ < oo in place of 2*.

If M is non-compact, we show that there is C > 0 such that if u — Au = f e L'(M),
then ||Vu||, = C||f||,. From the representation of the resolvent operator
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0 "
ROLANS = [e T (1) f dt
0
we see that it is sufficient to prove that
T o
(2.13) 6[@“ IVT (@) f Iy dr = ClIf ;-

From (2.5) we deduce for t < 1

INT@) fll; = [|[ Vep(x, 3,0/ (y) du(y)| du(x)

MIM

]JIIVXP(X s VOIS ()| du(y) du(x)

= T IVap(. p, 0 du(x) du(y) < %nfnl

whereas for t > 1 we have
IVT@) /1l = IVT()T@E = DSy =T = DSy =l fly
by contractivity. Summing up,

1 7/1

<ij

[e VT (t)f dt
0

!!fllldf+0f e M dr < ClIfl,

where the last constant C depends only upon the constants in the preceding inequalities.

It remains to prove (2.10). Since, as a consequence of analyticity, we know that
T(t)u e D(A;) for every ¢t > 0, we may write

AT (tyu=AT(t/2)T(t/2)u = T(t/2)AT(t/2)u.
As noticed before, T'(¢/2)u € D(A}), so that
AT(t/2ue L' (M) and T(t/2)AT(t/2ue D(A) < H (M), O

Remark 2.7. It will be important in the sequel to notice that Proposition 1.4 can be
stated by saying that BV functions can be approximated in variation by functions in the
domain of the Laplace-Beltrami operator, i.e., for every u € BV (M) there exists a sequence
(f;) contained in D(Ay) such that f; — win L'(M) and (1.7) holds.

3. A characterisation of total variation via heat semigroup
In this section we prove that, given a function u € L'(M), the limit
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(3.1) lim [|VT(t)u|du
=0 4y

exists and is equal to the total variation of u defined by (1.4). We need an elementary cal-
culus lemma.

Lemma 3.1. Let f € 4'(0,+x0) be a positive function satisfying the condition
() S Kf(1), V>0

for a positive constant K > 0. Then the function t — e~ Xf (¢) is non-increasing; in particular,
the limit

lim £(2)
exists, either finite or infinite.
Proof. From the condition
1) S Kf (1)

and the fact that f(z) > 0, we can deduce that

110
f =

Then, with 0 < s < ¢ fixed, we integrate the previous condition from s to ¢ to obtain

1nf(s)§K(t ),

and then
e (1) < f(s)e
whence the monotonicity, and the thesis follows. []
We are now in a position to prove the following result.

Theorem 3.2. Let M be a Riemannian manifold satisfying (H1), (H2). Then, for every
ue LY (M), the function

(3.2) [ — e’K’j|VT(t)u| du,
M
where K is the constant in (H1), is non-increasing; in particular, the limit
lim [|VT(t)u(x)|dp
t—0 M
exists, either finite or infinite.
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116 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds

Proof. Letue L'(M) be a given function; we are going to prove that the function
f:(0,400) — R defined by

J (@) = [IVT (1)u] .

is differentiable and satisfies f/ < Kf for every ¢ > 0. Observe that for every ¢ > 0 the func-
tion 7'(7)u is analytic, and then the equality

8VT (H)u| = (VAT (£)u, VT (1)u)

VT (£)ul
holds p-a.e. in M. Since

1

w7 VAT W VT (0uy| < [VAT (2)ul,

by (2.10), we can conclude that f is differentiable and we can differentiate under the inte-
gral sign. Using the Bochner-Lichnerowitz-Weitzenbock formula (1.1), we obtain

= Afl T(t)u|du

T dt
_4
dt

[<VT(t)u, VT (t)uy'/* du

Ui

J 6 VT ()u, VT (t)u)y du
2|

ONT(u, VT (t)uydu

= T

1

A£ VT (0] <VAT( Yu, VT (t)u) du

1 AVT(2) y |Hess T'(t)ul* Ric(VT ()u, VT (t)u)
2J VT (1)u _Ai VT (1)u| “_,J, VT (1)

Consider the following equality:

AVT(ul? .
§ T e VT e
);< VIO s
R " "
_2A£| T |3<V|VT(I) 1%, VIVT (0)u|") du
L L wwr@ulau
2 VT (t)ul?

Brought to you by | Biblioteca del (Biblioteca del)
Authenticated | 172.16.1.226
Download Date | 4/2/12 9:22 PM



Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds 117
Taking into account that

VIVT(t)ul*| = sup [Vx|VT(0)ul’
|XI=<1

=2 sup <VxVT(t)u,VT(t)u)

xX|<1

<2 sup |VxVT(t)u|- |VT(t)u|
X|=<1

< 2|Hess T(#)ul - [VT(#)u,

we obtain
g% = —%j&W(VWT(l)uﬁVlVT(t)u|2>du
_ _égmwwnz)mzdu
< 2£W|Hess T(t)u|* du.

In conclusion, taking into account that Ric(VT(t)u, VT (t)u) = —K|VT(t)u|*, we have ob-
tained that

(1) < K [IVT(0ul d = KF (1);
M
applying Lemma 3.1, the conclusion follows. []

We can now prove that the limit (3.1) coincides with the total variation of
ueBV(M).

Theorem 3.3. Let M be a Riemannian manifold satisfying (H1), (H2). Then, for every
ue LY (M), the following formula holds:

(3.3) lim [VT(0)u(x)| du(x) = Dl ().

Proof. Notice that, since T(t)u — u in L' as t — 0, by the lower semicontinuity we
have that

|Du|(M) < limiglf [IVT(t)u|du.
=0 ar

This inequality immediatly implies (3.3) if u € L'(M)\BV (M), both sides being +oo. For
u e BV(M), we prove that

lim sup [ V7 (1u(x)| du() < |Du (M)

By Remark 2.7, there exists a sequence (f;); = D(A1) converging to u in L'(M) such that
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118 Miranda, Pallara, Paronetto, and Preunkert, Riemannian manifolds
lim [V}l du = | Dul(M).
J=t0 4y

Since (f;); = D(A1), we have T(t)f; — f; as t — 0 in the graph norm, and then, by the
inclusion D(A;) = H'!(M), also in the H':!(M) norm. Therefore, for every ¢ > 0 we can
find a sequence (4); converging to 0 such that [|[VT(z;) f; — Vfi||, <& whence

JIVT(6) il dp < [IVf] duc+e.
M M
Moreover, for every f € D(A;) and ¢ > 0, from Theorem 3.2 we get
(34) e M [IVT(0)fldu < [|Vf|dp;
M M

then, defining g = T(1)f;, the sequence (g;); converges to u in L'(M), and also
T(t)g; — T(t)u in L'(M) as j — +oo for every ¢ > 0. From the lower semicontinuity of
the total variation and (3.4) it follows that

lim sup f|VT(t uldu = hm sup e X! f|VT(t uldu
—0

t—0

< limsup <11m1nf e K’“VT t)g]|d,u>

t—0

< limsup j|Vg]| dy = lim sup j|VT(t] fildu

J—+w J—+0

< limsup f|Vj§| du+e=|Du|(M) +e.
Jj—+oo

Since ¢ was arbitrary, the proof is complete. [

Added in proof. After this work was completed, our main result has been proved in
a simpler way, and without requiring hypothesis (H2), by A. Carbonaro and G. Mauceri,
see A note on bounded variation and heat semigroup on Riemannian manifolds, to appear in
Bull. Austr. Math. Soc.
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