Many algorithms have been proposed to minimally refine abstract transition systems in order to get strong preservation relatively to a given temporal specification language. These algorithms compute a state equivalence, namely they work on abstractions which axe partitions of system states. This is restrictive because, in a generic abstract interpretation-based view, state partitions are just one particular type of abstraction, and therefore it could well happen that the refined partition constructed by the algorithm is not the optimal generic abstraction. On the other hand, it has been already noted that the well-known concept of complete abstract interpretation is related to strong preservation of abstract model checking. This paper establishes a precise correspondence between complete abstract interpretation and strongly preserving abstract model checking, by showing that the problem of minimally refining an abstract model checking in order to get strong preservation can be formulated as a complete domain refinement in abstract interpretation, which always admits a fixpoint solution. As a consequence of these results, we show that some well-known behavioural equivalences used in process algebra like simulation and bisimulation can be elegantly characterized in pure abstract interpretation as completeness properties.

Strong preservation as completeness in abstract interpretation

RANZATO, FRANCESCO;TAPPARO, FRANCESCO
2004

Abstract

Many algorithms have been proposed to minimally refine abstract transition systems in order to get strong preservation relatively to a given temporal specification language. These algorithms compute a state equivalence, namely they work on abstractions which axe partitions of system states. This is restrictive because, in a generic abstract interpretation-based view, state partitions are just one particular type of abstraction, and therefore it could well happen that the refined partition constructed by the algorithm is not the optimal generic abstraction. On the other hand, it has been already noted that the well-known concept of complete abstract interpretation is related to strong preservation of abstract model checking. This paper establishes a precise correspondence between complete abstract interpretation and strongly preserving abstract model checking, by showing that the problem of minimally refining an abstract model checking in order to get strong preservation can be formulated as a complete domain refinement in abstract interpretation, which always admits a fixpoint solution. As a consequence of these results, we show that some well-known behavioural equivalences used in process algebra like simulation and bisimulation can be elegantly characterized in pure abstract interpretation as completeness properties.
2004
Programming Languages and Systems, 13th European Symposium on Programming, ESOP 2004, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004
13th European Symposium on Programming (ESOP 2004)
3540213139
File in questo prodotto:
File Dimensione Formato  
published-paper-springer.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 235.24 kB
Formato Adobe PDF
235.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/1365865
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
  • OpenAlex ND
social impact