Let $J(N,H)$ be the Selberg integral and $E(x,T)$ the error term in Kaczorowski-Perelli's weighted form of the classical explicit formula. We prove that the estimate $J(N,H)=o(H^2N)$ is connected with an appropriate estimate of $\int_N^{2N}\vert E(x,T)\vert ^2 dx$, uniformly for $H$ and $T$ in some ranges. Moreover, assuming a suitable bound for the quantity $\int_N^{2N}\vert E(x,T)\vert ^2 dx$, we also obtain, for all sufficiently large $N$ and $H\gg(\log N)^{11/2}$, that every interval $[N,N+H]$ contains $\gg H$ Goldbach numbers.

A note on primes and Goldbach numbers in short intervals

LANGUASCO, ALESSANDRO
1998

Abstract

Let $J(N,H)$ be the Selberg integral and $E(x,T)$ the error term in Kaczorowski-Perelli's weighted form of the classical explicit formula. We prove that the estimate $J(N,H)=o(H^2N)$ is connected with an appropriate estimate of $\int_N^{2N}\vert E(x,T)\vert ^2 dx$, uniformly for $H$ and $T$ in some ranges. Moreover, assuming a suitable bound for the quantity $\int_N^{2N}\vert E(x,T)\vert ^2 dx$, we also obtain, for all sufficiently large $N$ and $H\gg(\log N)^{11/2}$, that every interval $[N,N+H]$ contains $\gg H$ Goldbach numbers.
File in questo prodotto:
File Dimensione Formato  
[6].pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 490.14 kB
Formato Adobe PDF
490.14 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/122140
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact