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A NOTE ON PRIMES AND GOLDBACH
NUMBERS IN SHORT INTERVALS

A. LANGUASCO* (Genova)

Abstract. Let J(N, H} be the Selberg integral and F(s,T) the error team
in Kaczorowski-Perelli’s weighted form of the classical explicit formula. We prove
that the estimate J(N,H) = o( H*N) is connected with an appropriate estimate

of j;N |E(m,T)|2 dx, uniformly for H and T in some ranges. Moreover, assuming
a suitable bound for I;N |E(2,T)|2 dz, we also obtain, for all sufficiently large
N and H > (log N)*'/?, that every interval [N, N 4 H] contains 3» H Goldbach

numbers.

1. Introduction

In 1993 Kaczorowski-Perelli [10] showed that an estimate of the form
(1) J(N,H)=0o(H?N) for N°<HZN"S,
where 0 < £ < 1 and

sy = [ (et )= b0) - 1) do

is Selberg’s integral, follows from an estimate of the form

N oy | 2 - N3 £ < nl-e
/;V 1E(m,f)| der =o TIL for N*ST SN ",

Here L =log N and E(z,T) denotes the remainder term in Kaczorowski-
Perelli’s [9] weighted form of the classical explicit formula

w0 =o- ¥ w (L) 24 e,

V=T
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192 A. LANGUASCO

where p = G | ¢ runs over the non trivial zeros of the Riemann zeta function

{(s) and
() 1 if 0€u<l
wiu) =
201—w) if 12wl
Moreover, they proved that
2N 9 A3
() / |FJ(7‘,'T)| dm:n<”> for NE<T < Ni-e
N 1 -

follows from (1).

We recall that, from an unconditional viewpoint, J(N, H)= o( H?N)
holds for H > N1/6tc) see e.g. Heath-Brown [6], and hence that [{N,T)
= o(%) holds for T < N5/6-¢,

From a conditional viewpoint we recall that, under the assumption of the
Riemann Hypothesis (RH), J(N, H) = o H2N) holds for H = oco(log® N),
where we write f = oo(g) to denote g = o f), see Selberg [15], and that,
under the assumption of RH and the Montgomery’s pair correlation con-
jecture (MC), J(N,H)= o H:N) holds for H = co(log N}, see Goldston—
Montgomery [5].

The first aim of this paper is to show that the connection between (1)
and (2) holds for H and T in wider ranges. The second aim is to apply these
extended results to the study of the distribution of Geldbach numbers, i.c.
even numbers representable as a sum of two primes, in short intervals.

We will need the following slight modification of Kaczorowski—Pereili’s
explicit formula [9]. Let

L if w0 2 (7 oo 8N
sgn(u)=4¢0 if w=0, Gz,1,n)= ?/ (f - " 'du) dr
~1 if u<0 712 \Jrlleg ]

and
N({o,T) = 1 {p: p=pB4iyzero of {(s) with 32 o, |y| < T}|
We have

THEOREM 1. Let 16S N <2 S2N, 4T <8 and1 . Then

A
=

HA

g

ba)=a- Y w ('Tl') =+ B, T),

yIST

Acta Mathematica Hungarica 78, 1858



ON PRIMES AND GOLDBACH NUMBERS 193

where p = 3+ iy runs over the non-(rivial zeros of the Riemann zete function

((s) and

(3) E(z,T)= E(z,T)+ Ea(x,T) + Ea(x,T)
with
(4) Ey(z,T) = % Z A{n)sgn(z — n)G(z,T,n),

MN MN
%—Tdnéﬁﬂ-}-T

MNL N4 N NI

(5) Ey(2.T) < T2log &i'%\f_ T T4 T3—o

for every o € (0,1} and a € [é 1), and

NI

6 By(2,T) € zoerrrce.
© oz )<<TMlog%

Moreouver,

2N 3
2 -2 2N N

The proof of Theorem 1 follows closely the argument in [9] and hence will
be omitted. The bound in (7) can be obtained from (7) of [9] by straightfor-
ward computations. In the same way we also obtain that

N 2 . 2N N3
(8) -mZ:;V | Es(m, 1)|" dz < M72J (N, T) + TINZ
where
2N
JNH) =Y (9(n+ H) = p(n) — )
n=N

is the discrete version of Selberg’s integral.
From the Corollary in Kaczorowski-—Perelli [9] we quote the following

CorROLLARY 1. Let 16 S N <z 2N, 4T <L Then

NL

Tlog%.

E(z,T) <
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194 A. LANGUASCO

We denote by J(N,T') the quantily f]%’N kﬂ(aﬁ, T)|2 dx and by I{N,T) the

quantity >, |E(m,T)|2.
NEmSIN
Qur first result about the relations between J(N, H) and I(N, T} is

THEOREM 2. Let 16SN<2<2oN, MUSTS{LL and 1EM

N1/16 p1/5 -
< min (T; _}_’,"ET) . Then

2N) N3log¥(M + 1)

N
p e —2 aor
(N, T)< M J(N )-|~M J(N, R e

M

Since the proof of Theorem 2 can be obtained following step by step the
argument used in Theorem 1 of [10], we will only give a brief sketch of it. In
fact, Theorem 2 iz a sharpened version of Theorem 1 of [10].

From Theorem 2 we obtain

COROLLARY 2. Let k be a parameter such thal k = oo(1) for N — oo,
Assurne thal

J(N,H)=0o(H?*N) uniformly for kL < H X o(N).

Then
3

, N N
I(N,T)=o0 (Tz) uniformly for co(1} ST <0 (H) i

‘orollary 2 allows us to connect directly the non-trivial bound J(N, H)
= o f{2N) with the non-trivial bound I(N,T) = o{ N-). We remark that
Theorem 2 and Corollary 2 sharpen Theorem 1 and Corollary 1 of Coppola-
Vitalo [3].

Concerning I(N,T') we have

THEOREM 3. Let 16 N <z <2N, 4
N1/16 1/s
< min ( i ——=|. Then

HA

Tg% and 1< M
It Lo

; T? NM
I(N,T) < I(N, T) + 57 (N, —)

T
_ 3
+ M2 (J (N, 2}{[) +J (N, gg)) + ?%4—2-} M?N.

We use Theorem 3 to obtain a sort of “converse” to Theorem 2. To this
end we will need also the following
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ON PRIMES AND GOLDBACH NUMBERS 195
LEMMA. Letl S H & N. Then
J(NHY <« H*N + HNL and J(N,H)< H'N + HNL.

Since I(N,T) is related to the “second” difference of primes in short in-
tervals (for more details see the Introduction of [10]), we caunot hope to
obtain a4 “direct” converse of Theorem 2. However, following [10], we can
prove a “partial” converse to Theorem 2.

THEOREM 4. Let 6 > 0 be a sufficiently small constant and ki, ky be two
parameters. Let

1 NI-8(ILk 1,’2H_1
RS HE NS and J*[og( (Lk)*H) ]

log 2

H?
where 1 < ky £ LA, A > 0 absolute constant, 1 £ k) £ ——= and N — oc.
= = 3

= kngl
Let further
2 [kl NP T N . N' N
T L) 2 4 LT 1008, T | 25 B0k LY

for every 7 =1,...,.J.
Then

J
J(N,H)< H*Y H72I(N,T;)

g==1

2
+H*N (kl‘l + (%kl) + k5t exp (—cLl/4)) .

where ¢ > O is a small absolule constant.

Apgain, we will only give a sketch of the proot of Theorem 4. The “natu-
ral” lower bound on H would be H » L. The limit of our method is given
by the available density estimate near o = 1 and it appears to be H > LA,

The further loss of a factor L*/? follows from the dissection method used in
the proof.

Coppola—Vitolo [3] contains a slightly sharper statement than our The-
orem 4. However, it appears that their treatment of the quantity Fi(j) in
the proof of our Theorem 4 contains a mistake which affects the final result.
After correction of that mistake their result coincides with ours, 7

Choosing k%Lll/Q SHENY ky=k2and o(1) £k £ o((%) ”’2) in

Theorem 4 we easily obtain
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196 A. LANGUASCO

COROLLARY 3. Let 6§, N be as in Theorem 4. Assume that

3 &
IINT)=0 (é\;L) uniformly for —j;% £T <o (%) .

Then
J(N,H)=o(H’N) uniformly for (LM < H L N

Corollary 3 is, in some sense, a “converse” to Corollary 2. Unfortunately,
to obtain the non-trivial bound J(N, H) = o( H2N), Corollary 3 needs the
stronger hypothesis [{N,7T) = o(%\%) . This is due to the dissection argu-
ment used in the proof of Theorem 4.

Corollary 4 below furnishes a conditional result on the distribution of

Goldbacl numbers in short intervals.

COROLLARY 4. Let 8, N be as in Theorem 4, Let further H 2 CL1/?,
where C > 0 is a sufficiently large constant. Assume that there exists a suf-
ficiently small constant ¢1 > 0 such that

N . . N® N
ﬁ unzformly fOT —Qg > T “mg

A

(N1 €6

Then o positive proportian of the ewen integers in the interval [N, N + H|
are Goldbach numbers.

We recall that the best unconditional result on the positive proportion
of Goldbach numbers in short intervals is H 3» N993%/2% see e.g. Baker-
Harman—Pintz [1] and Jia [8]. From a conditional viewpoint we have, un-

der the assumption of RH, that H » log? N, see Kétai [11], Montgomery—
Vaughan [14], Goldston [4] and Languasco-Perelli [12], and, assuming RH

and MC, that H > (log N)'*, see Goldston {4].

2. Proof of Theorem 2 and Corollary 2

We divide the interval (:r - MT-M, z+ MTJE] into P < M? subintervals of
the form

L=(n;m+ K}, K=\, ny=2+jK, j=1,...,F

We may suppose also that either I; C (0,2] ot I; C [2,400) for every j, hence
sgn {2 — n) is constant on each ;.
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ON PRIMES AND GOLDBACH NUMBERS 197

Hence, hy Lemma 1 of [10], (3)—(5) with o = % and o = %, we have

N
(9) BleT)< Y 4D +Bs(2.T) 4 oo,
where
P
2o =2 6T |3 (Am) - 1)
=1 nel;
and

P
>, = 2 2 MG Ton) = Gla, Ty

=1 REI}

The estimation of the mean-square of 3., and ¥, can be performed as
in [10] and hence we obtain

2N 2 ) N
(10) /;V ‘21’ de < M J(N,W)
and
2 2 N N3log¥( M + 1)
. 2 —_— = A 7
(11) /N >, dr < log"(M + 1)J (N,,I,M)-I— T

Theorem 2 now follows from (7), (9), (10) and (11).
To prove Corollary 2 we choose M < kL and M = oo(1) for N — o0. So

Theorem 2 implics

N 2N N3
N T) & M? NV, M2 <Y
(N, T) J(i,TM,)-%— J(N’T)lo(TQ)

uniformly for M4 < T < Wf}%—
Now, using the hypothesis J(N, H) = o{ H?N) uniformly for kL < H
< o(N), we get

3

N .
.I(N,T)zo(ﬁ) uniformly for oo(l)gTéMkL

and then Corollary 2 follows.
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198 A. LANGUASCO
3. Proof of Theorem 3

We have, for n # [z], that sgn{z —n) = sgn ([«] - n) and so the intervals

(:r - Mﬂ , T+ A%N1 and ([a:] MTN,[;U] + ‘M}N] differ at most for the two

endpomtb By (4)-(5) with & = } and o = 2, we obtain
(12) E(e,T) - E([2],T)

:% Y Amysgn(a  w)(Gle,Tyn) = G([], T,n))

2<|n-—af< 8N 2
+Es(2,T) — Ea([2],T) + O N
’ TM
Arguing as in Lemma 2 of [10], we have

{13) % Z Al{n)sgn(z — n)(G(w,T, n) - G'([fc],T,n))

MN
2<|n—9:!<'—1|——2

1 rlos 51 gin u
€ = Aln ] ] du } dr,
T Z ( ) T/Z( T!log%ll ’l‘.t

|n— r|S My

log - { 410g—”<< Z A(n)

.1,!{

< T Z Al

i'n ..’CI‘- ln,—
and hence, by (12)—(13), we have

(14)

T N
B, 7) - B(je),T) < NS A 1 Bl )+ (I T) + -
By (14), for any m € [N, 2N], we obtain
m 2
2
| E(m,T)| <</W | E(z, Ft d$+N2/ . Z A(n)| dx

MN
|n—-wi S 255

g3 ) N‘2
+/m_1 bg(m,T)|2d$+|E3(m,T)‘2+W
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ON PRIMES AND GOLDBACH NUMBERS 199

Theorem 3 now follows summing over m, using (o + 0)? < 242 + 202 and

(7)-(8).

4. Proof of the Lemma

If, for any fixed £ > 0, H 2 N° we get, by the Brun-Titchmarsh theorem,
that ¢(2 + H) — ¢(2) — H < H and hence

(15) J(N,H)<« H?N.
Let now 1 £ H £ N°. By Gallagher’s lemma, see e.g. Montgomery [13],

Lemma 1.9, the Brun-Titchmarsh theorem and Parseval’s identity, see e.g.
Kaczorowski—Perelli [10], we have

H3L?

log? H

1/2
(16) J(N,H)= -[1/2|5(a) ~T(a)|*L{e) da + O ( ) +O'(HN),

where

S(a) = Z A(n)e(na), T(a)= Z e(na),

N§n§2N N<nZ2IN
H 2
L{a)= )" e(-ma)| , e(z) = exp(2riz)
m=1

and O’ means that the error term is present only if H ¢ N.
By

(17) L{a) < min (}12; iaj"g)

and partial integration we get

1/2 )
(18) f—1/2 | S(a) — T{a)| L) da

) 1/H 5 1/2 Y
< H L/HJS(Q)—T(a)[ da+/:1/245(a)mf(a)| do

(L2 L) L ps-reria) o

Acta Mathematica Hungarica 79, 1988



200 A. LANGUASCO

By suitable medifications of the technique of Languasco Perelli [12], we
can get

¢ N2 Ho2¢sw
(19) /_g)S(a)lzdax N if F5¢1
NEL if [ £¢2 4,

where £ € (0,3] and f x g means that ¢ < f < g.
Now, using T(e) < min ( N; |a|—1) , we obtain

£ <<N2 if O 1
(20) / ()| dev : . l< f<w
¢ =N+0(3) if $2€653

Hence, by (19)—(20) and the Cauchy—Schwarz inequality, we get

. NY% f0Ze<)

¢ 2 :
(21) /_JS‘(a)ﬁT(Q)! do < S N if F<6<+
NgL it FLE< 3,

and then, by (16), (18) and (21}, we have
(22) J(N,HY< H*N + HNL.
From (15) and {22) we obtain the first inequality in the Lemma. The

second inequality follows easily using J(N, H)= J(N,H)+ O(HNL).

5. Proof of Theorem 4
By (16) we have

II3 LQ
10g2 H

(23) J(N,H)= S(N,H)+ 0 ( ) +O'(HN),

where

1/2
SN, H) = /_W | 5(a) — T(e)|* L(e) de

and, as before, Q' means that the error term is present ounly if ' g N.
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ON PRIMES AND GOLDBACH NUMBERS 201

Hence we study S(/NV,H). Let £ € (U, %] to be chosen later on. Then, by

Parseval identity, the Prime Number Theorem and (17), we have

- 1/2
o0 (/_M / )\sm)_m)mwa«%

and

£ . &

S(a) — TN L) dex 2 S(a) = T(a)!? de.
@) [ [8@- 1] K <" [ |S(e)=1(@)" da

Now we dissect (—£,£) into 2J + 1 = O([L) subintervals of the forin

AU=( Nﬁwl’Nﬁ—l) and ‘4_;;—‘ (if—j,izf_l) o F=1,

&]\”_5
log 2 } )
Moreover, for every non-trivial zero p = 3 + iy of {{s), we define

‘.VhBI'O J’ - [

aN

n+1
T(a) = Z Unpe(na) with a,, = / =1 gt
n=N n

. N¢ N
Let now T_;, € ]:Tg’m

Yor o € A; we write

},j: 1,...,J, to be chosen later on.

(o)) = = 3 w () 2o(e) + B

J
ETy

where

N ]
Ri(a) = Z aj(n)e(na) and aj{n)=A(n)-1+ Z w (l) A pe

n=N "Y[gTJ J
By the Cauchy-Schwarz inequality, we have

1/2\ 2

LJJS(&)_T(Q)PCIIQ< > (/AJ]TP(Q)Pda) +[4J|Rj(a)\2da

Iv[&T;
= E1(j)+ Ea7),
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202 A. LANGUASCO

say, and hence, using the same argument as in [10], we obtain

4 J
(26) /£ | S(a) — T(a)|2d0-‘ < Z (£1(7)+ Ey(7)) + N exp (%CLl/q)’

i=1

where ¢ > 0 is an absolute constant (not necessarily the same at each occur-
rence).

Inserting Theorem 3, the Lemma and Corollary 1 in the technique of [10],
we obtain

(27) Eo(j) < H7?I(N, T} + H7(NL + M*N)

N2

N3 9
ML —
! Hjszlogzi.]\é

_ L H:
+(HjTM)2+ 7

provided that 1 < M < min ( N/167,-4, T}/°[-9)
Now we proceed to estimate £1(j). Arguing as in Theorem 2 of [10], we
have

NB-T
Tyo) < ol for every «€ A;
o
and hence
2
() < LH;N 7 sup N7N(0,Ty)
0<o<1
where T; = %]'

Let 0 < &' < i be fixed. If H; > N7 we can use the density estimate (see,
e, Ivic [T1)

N(o,T) < T¥* 7 10g® T

to obtain
(28) Ei(j) < Nexp(—cL'4),

If 2kyL® < H; £ N® we use the density estimate (see Conrey (2] and,
e.g., Ivié [7])

TSm0t legT it J<o <ty 4+8§1191‘OlolgoTT
N(o,T) <« ¢ T3U-0)/(2=0) jog5 T if 1+ 43319%%{;1 o<
730-0)/Be-1)jgettp i S<osl
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ON PRIMES AND GOLDBACH NUMEERS 203

Since the maximuu of N7N (o, 7}) is attained at ¢ — % we have

1 4
(29) Eij) <« NH'L A

provided that # is sufficiently small and N is sufficiently large.
Hence, by (28)-(29), we gel

N
(30) E1(4) € -—— + Nexp (—cL?)
koL

for every kL% < H; £ N] =
Now, by (24)- (27) and’ (30) we ohtain

J
: - , H3*NL
(31) SN, H)< HP Y H7PI(N, 1)+ HPP(N L+ MPN) + e

=1

HN NI
kr 8

Theorem 4 follows by choosing M = (L.k‘l)l’/2 and £ = % in {31) and
using (23).

+H*NML+ H*N'°L% + + HEN exp (—cI*).

6. Proof of Corollary 4
Let R(n)= 3 A{my)A(mg). From its definition (see Section 4} we

mymoe=n

H
get that L{a)= > a(m)e(—ma), where a(m) = H — |m]|.

A sufficient condition to prove that a positive proportion of the even
integers in the interval in [NV — H, N + H) are Goldbach numbers is
N+H
(32) Z a(n — NYR(n) 3 N,
n=N-H

see e.g. Goldston [4].
It is easy to prove that

N4H

(33) D" a(n- N)R(n)= S(a) L(a)e(-~Na) do

1
n=N-H )
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204 A. LANGUASCO

: T(a) L{a)e(—Na) da + [

-/

where E(a) = §(a)’ — T(a)?.
By straightforward computations we get

1
2

’ E{a)L{a)e(—Na)da,

L
2

(34)
% N+H
/ 1 T(e) L{a)e(~ No) da = Yo oaln N) N 1=HN + O,
-3 n=N-H htk=n
and, using (17) and (20),
(35) / “T(0)| 20 (0) der < H2N,

L
2

Using the identity f2 — g2 = 2f(f — ¢) — (f — ¢)?, the Cauchy-Schwarz
inequality and (35) we have

(36) /j E(a)L(a)e(—Na)da < (H?N 15

L
2

1/2
| 5(a) ~ T(a))” L{a) da)

+/;§ | 5(a) —T(a)izL(a)da.

1
z

Hence, by {33)—(34) and (36}, to obtain (32) it is sufficient to prove that
there exists a sufficiently small constant ¢o > 0 such that

1

(37) / " 18(0) = T(e)|*L{a) dor < e, 2N
1

J-3

holds.
By (16) we have

L1/2 3r2
(38) |S(a) ~ T(@)|*L{a)da = J(N,H) + O ul ZL +O'(HN).
~1/2 log= H

Choosing H 2 CL''/% where €' > 0 is a sufficiently large constant, and
using Theorem 4 with &, = &} = C, we obtain by (38)

1/2
(39) [ ECEID 1?L(a) dar
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ON PRIMES AND GOLDBACH NUMBERS 205

+ o H2N).

J .
N H*N
2 -_QI N
<A ;HJ 1608, ) T T

hypothesis on I{N,T) that (37) holds with ey = c-i2,
Hence (32) holds and Corollary 4 follows arguing as in Goldston [4].

Since J < ¢3L, choosing ¢y £ (10000c3C*/?) ~! we get by (39) and the
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