We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.

ALGEBRAIC - GEOMETRICAL FORMULATION OF TWO-DIMENSIONAL QUANTUM GRAVITY

MARCHETTI, PIERALBERTO;MATONE, MARCO
1996

Abstract

We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.
File in questo prodotto:
File Dimensione Formato  
art%3A10.1007%2FBF00714381.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 354.92 kB
Formato Adobe PDF
354.92 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/120416
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact