We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.
ALGEBRAIC - GEOMETRICAL FORMULATION OF TWO-DIMENSIONAL QUANTUM GRAVITY
MARCHETTI, PIERALBERTO;MATONE, MARCO
1996
Abstract
We find a volume form on moduli space of double-punctured Riemann surfaces whose integral satisfies the Painlevé I recursion relations of the genus expansion of the specific heat of 2D gravity. This allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such recursion relations using the Duistermaat-Heckman theorem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
art%3A10.1007%2FBF00714381.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
354.92 kB
Formato
Adobe PDF
|
354.92 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.