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Abstract. We find a volume form on moduli space of double-punctured Riemann surfaces whose integral 
satisfies the Painlev6 I recursion relations of the genus expansion of the specific heat of 2D gravity. This 
allows us to express the asymptotic expansion of the specific heat as an integral on an infinite-dimensional 
moduli space in the spirit of the Friedan-Shenker approach. We outline a conjectural derivation of such 
recursion relations using the Duistermaat-Heckman theorem. 
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1. Important results concerning 2D gravity have appeared in the last few years. 
Investigations of the measure of Liouville quantum gravity were considered in [1], 
whereas nonperturbative results have been obtained within the framework of the 
matrix models approach [2] and in the topological approach in [3-6]. The 
relationships between the different approaches to 2D gravity have been investigated 
(see [7] for a review), in particular it has been proved [8] that the Liouville action enters 
in the evaluation of intersection numbers involved in topological gravity. More 
recently, it has been proved that the specific heat of a model of pure gravity can be 
expressed in terms of a series of integrals on moduli spaces of punctured spheres with 
the integrand involving the classical Liouville action [9]. In [10], it has been shown 
that this model corresponds to Liouville quantum gravity with a nontrivial O-vacuum. 

Interesting suggestions on the structure of the Liouville path-integral have been 
considered in [1]. However, the explicit form of the measure is still unknown. 

Our aim in this Letter is to start from the exact results of matrix models and then 
to write the contribution at genus h to the asymptotic expansion of the specific heat 
as an integral on J~'h.2, the compactified moduli spaces of double-punctured 

*Partly supported by the European Community Research Programme Gauge theories, applied supersym- 
metry and quantum gravity, contract SC1-CT92-0789. e-mail: bonelh@ipdgr4.pd.infn.it: marchettl;a~ 
padova.mfn.it; matone@ padova.infn.it 



190 G. BONELLI ET AL. 

Riemann surfaces. Let us shortly outline how this can be achieved. It is well known 
that the specific heat can be identified with minus the two-puncture correlator 
<((90) 2 > and this explains the appearance of ~/h,2- Furthermore, it satisfies the 
Painlev6 I (PI) equation. One starts by considering the recursion relations of the 
asymptotic expansion of PI. In order to reproduce them in terms of integrals on 
moduli spaces, one first notes that the Weil-Petersson two-form cowP, the natural 
K/ihler form on the moduli space of Riemann surfaces E, has the remarkable 
property of satisfying the restriction phenomenon. Namely, if we write [11] cowP in 
terms of Fenchel-Nielsen coordinates l j, z i, the restriction of 

(/)'WP = ~ dlj A dzi, 
J 

to the submanifold Ik, = O, ..., lk, = 0, is the sum of the Weil-Petersson two-forms on 
the moduli spaces for the components of the Riemann surface E -  {nodes for 
kl . . . .  , kn}. Second, one notes that the structure of the recursion relations for the 
asymptotic expansion (see (3)) appears to be related to the structure of the boundary of 
the moduli space i /h ,  2 involving Riemann surfaces with nodes (see (l)). However, to 
obtain such recursion relations from the Weil-Petersson two-form using Poincar6 
duality in the framework of algebraic geometry, one meets the difficulty that the 
Poincar6 dual of COwp is not concentrated on the boundary of moduli spaces. This 
problem can be solved by introducing a volume form co~f  2 A coL, where the coho- 
mology class [col ] of the two-form coL is the Poincar6 dual of a divisor DL concentrated 
at the boundary of ~r 2 and this permits the use of the restriction phenomenon 
property of co wp. The choice of DL is quite crucial and is determined by the structure of 
the theory. This algebraic-geometrical formulation derived directly from the matrix 
model strengthens the connection between topological and Liouville gravity. 

Recovering the volume form on ~'h, 2 associated to the PI, allows us to write the 
asymptotic series as a unique integral of a suitable volume form on an infinite- 
dimensional space of double-punctured Riemann surfaces, in the spirit of the 
Friedan-Shenker program for 2D quantum gravity. This integral is the asymptotic 
counterpart of an analogous integral on an infinite-dimensional space of all punc- 
tured Riemann spheres considered in 1-10] representing the specific heat in the strong 
coupling region. 

2. Let us shortly recall some basic facts about the moduli space of stable curves ~'h, 
the Deligne-Knudsen-Mumford compactification of moduli space, and the specific 
heat of 2D gravity. 

i / h  is a projective variety and its boundary c ~ '  h = i / h \ ~ ' h ,  called the compac- 
tlfication divisor, decomposes into a union of divisors Do, ...,D[h/2] which are 
subvarieties of complex codimension one. A Riemann surface E belongs to 
Dk -~ fffh-k, 1 X ~'k, 1, k > 0 if it has one node separating it into two components of 
genus k and h - k. The locus in Do g ~'h-1,2 consists of surfaces that become, on 
removal of the node, genus h - 1 double punctured surfaces. Surfaces with multiple 
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nodes lie in the intersections of the Dk'S. The compactified moduli space ~r of 
Riemann surfaces with n-punctures zl . . . . .  z.  is defned analogously to JZCh. In 

particular, for n = 2, we have 

h 
_(h+l) ~/h,4 ..~ ~ ~(h+l) ~7[h_k+l 2 X ~[k 2 -~ ~ ' ~ h +  1,2 e'O 

k=l  

h 
+ ~ O(kh+X)~h_k+l,1 X ~ k ,  3, (1) 

k=O 

in the sense of cycles on orbifolds, where the coefficients are combinatorial factors. 
The specific heat of pure gravity satisfies the PI, L r 2 ( t ) -  ~r"(t)/3 = t, where 

t =-2~9~ -~/s, with 2 R the renormalized cosmological constant and 9~ the string 
coupling constant. The asymptotic (genus) expansion of ~e(t) has the form 

~r ~. ~ e2iO(1-h}Zh t-5h/2+l/2, t---~ +O0, (2) 
h=0 

with the coefficients Zh satisfying the recursion relations 

2 5 h  2 - 1 1 h 

Z| = 1, Zh+l -- 24 Zh--2 L Zh_k+lZk, | = 0,~/2,  (3) 
k=l  

where | = 0 corresponds to ordinary 2D gravity [2], whereas | = g /2  corresponds 
to the model with a nontrivial O-vacuum proposed in [10]. 

In terms of the free energy F, the n-puncture correlator is given by [2] 

d" F(t) 
( ( C o ) " )  - dr"  ' (4)  

and ~e(t) = F"(t). 
For future purpose, we write down the genus expansion of the 4-puncture 

correlator 

(((.00) 4 ) = A--~2(((_~0) 2 )  ~ - -  ~ e2tO(1-hJWht-5h/2-3/2 , t-+ - ~ ,  
k l /  h=0 

2 5 h  2 - 1 
Wh Zh. ! r (5) 

4 

3. We now find a representation of Zh in the form ~.~,.: co ~h), with co th) a (6h - 2)-form 
I . (h ,2) ,3h-2 co~) / (3h-  1) v on ~r 2- We assume CO(h) _-- ,to WP ) A . with COiL h) a two-form whose 

explicit expression will be given later and .th,.) the Weil-Petersson two-form on toWP 
fffh,, divided by n 2 We set 

1 f {. (h. 2)'~3h-2 A (h) h Zh (3h 1)! ~.. - -  21,to WP ] CO L ' 0, (6) 

with initial condition Z| = 1. 
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We now define a divisor D th), which we call 'Liouville divisor', as the (6h - 4)-cycle 

h - 1  

O(h) = c~) ~/,_1,4 + ~, C(khJ ~/h_k,2 X ~k ,  2, (7) L 
k = l  

(h) will be given later. We identify .(h~l where the coefficients c k [toz ] as the Poincar6 dual 
- (h)  3 : (h)  to D(L h), i.e. [co L j cl([Dt. ]) where, as usual, [D] denotes the line bundle 

associated to a given divisor D (see, for example, [12]) and c i denotes the first Chern 
class. 

(h),~ We now fix the c~ ~ by requiring that the Zh's defined in (6) satisfy the recursion 
relations (3). Two facts are crucial for obtaining recursion relations: first, in 
evaluating the relevant integrals only the components of the boundary ~ir 2 of the 
form ~ [ h - k , i  X J [ k , j  with i = j  = 2 and ~/~h-1,4 will appear, and second, tO " (h, 2)Wp 
satisfies the restriction phenomenon mentioned above. In particular, considering the 
natural embedding 

i: ~k,2 ""1" ~[k ,  2 X * ---4 J~k,  2 X J ~ h - k ,  2 ~ ~ h ,  2 ~ ~ h , 2 ,  h > k, (8) 

one has by [11, 13] 

.(k 2)-I i* t o ~  ] = [COtWh'p2)], (9) 

g . ( h -  L 4 ) 1  and similarly for Ltow, ]. By Poincar6 duality, one obtains 

f.~r [ ~(h, 2 ) ~ 3 h - 2  A (h) 1- . ( h , 2 ) q 3 h - 2  (h) t"wP , COL = LtoWt" ] c3[D L ], (10) 
h,2 

so that by (8)-(9), it follows that 

Z h + l  - - -  

The 
( r'~(h-k+l'2)~3(h-k)+2 A ( . (h ,2) '~3k-1  wwp , ,U, wp i term, therefore we have 

1 { ; h ~ ( h + l ) [ 3 h +  ICk [3k -  Zh+l -- (3h + 2)! c(0h+l) (('o(h'zl')]ah+ 1 , + I)• 
#(h,4 k= 1 

The recursion relations (12) coincide with (3) if we set 

Cth+l) ( 3h+2)  Wh (3h+2)  25h 2 - 1  
0 . . . . .  Z h ,  

6 ah,4 6 4ah,4 

1 f~(h+ 1) i- . (h,4) 13h+  1 
(3h + 2)! } co t_towp ] n [J~/h,4] + 

~ c(h+'}r'lh-k+L2' "'k'2'lZh+l [~[h-k+l,2 }.  + k LtoWe + tUWp j C~ X ~r 2] 
k = l  

only contribution in the second term in the r.h.s, comes 

(11) 

from the 

(12) 
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( h + l )  3h+2( .zkZh-k+l ) ,  k > O ,  (13) 
Ck -- 2 \ak ,2ah-k+l ,  2 

where 

1 ~ ( .(k,n)x3k-3+n 
- -  J ,  x U3 WP ) ' ak,. (3k -- 3 + n)! ~, .  

is the Weil-Petersson volume of ff//k,, times (l/rt 2)3k-3 + n and Wh has been defined in 
(h) (5). Notice that all the coefficients c k are rational numbers so that DL defines a 

rational homology class and the above computations can be interpreted in the sense 

of rational intersection theory. 
Compar ing (2) with (6), we have asymptotically 

e2i@(1-h)t-15/2Ih+(1/2) ; ( . ( h . 2 ) ~ 3 h - 2  (h) 
~ U / w p  ) A (14) J~" ( t )  ~ e 210 l 1/2 "~ h=l ( 3 h -  1)! z~,.2 COL " 

If one is able to express the coefficients Zh in terms of the expansion around t = 0 

[9, 10] then, since the divisor of the expansions around t = 0 and t --* + oo are 

known, it should be also possible to understand in more detail the reduction 

mechanism from genus h to punctured spheres. We remark that the structure used in 

the derivation of the recursion relations can be generalized to integrals of ,.,T/h,, 
yielding recursion relations for n-puncture correlator. Furthermore, together with a 

suitable choice of divisors at infinity, the use of the restriction phenomenon seems to 

be useful to investigate intersection theory on ~'h, ,-  

4. As in [10]. one can construct an infinite-dimensional moduli space of Riemann 

surfaces including those with infinitely many handles via the following inductive 

limit. We consider the embedding 

ih: ~'7[h,2 " *  , ' ~ h + l , 2 ,  h > 0, 

and, for q ~ ~ +, we define 

~ , 2 ( q )  = f i  (~Z/h.2 X [O, qh])/(~//h,2,qh)~(ih(J/r (15) 
h - 1  

Let dy denote the Lebesgue measure on ~ and define the indefinite rank form 

~_~ o 2 , 0 ( 1 - h ) r , ,  (h. 2)  . . . .  A CO (L h, 
~................~- ~ ~ WP J ~  = z_. A dy, (16) 

h=l ( 3 h -  1)! 

then, asymptotically, 

~J~f(t) ~ e2iO t 1/2 d- t 1/2 f (17) 
J ~ ,  2(t- 5"2 j ' f f3~"  

One can give a meaning to the r.h.s, of (17) in terms of a perturbation series. If the 

asymptotic series is Borel summable, as presumably happens in 2D gravity with 
O-vacua, a more precise meaning can be given via Borel summation. 
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Equation (17) expresses the asymptotic behaviour of the specific heat of nonpertur- 
bative 2D quantum gravity as an integral on an infinite-dimensional space involving 
moduli spaces of all double-punctured Riemann surfaces and, hence, can be inter- 
preted in a sense as a kind of realization of the Friedan-Shenker program [14] in the 
asymptotic region. 

5. We now give a conjectural argument that could relate our Ansatz (6) to the 
path-integral approach to Liouville gravity. In this line of thought, a key step is the 
Duistermaat-Heckman (DH) theorem (15) which, roughly speaking, corresponds to 
the following statement. Let X be a 2n-dimensional symplectic manifold with 
symplectic form co and H a Hamiltonian on X. Then integrals such as 

1 fx~O n n~ e - H '  

only depend on the behaviour of the integrand near the critical points of the flow of 
the Hamiltonian vector field. The point is that in a path-integral approach one 
expects that the contribution at genus h to the two-puncture correlation function of 
2D gravity is given by 

1 ~ [. (h,2)'~ 3h- 1 - -  ~tu wP ) e -  H, ((6%) 2 )h -- (3h 1)! __z',.2 (18) 

where H is an 'effective action' arising from the integration in the path-integral at 
fixed moduli in ~r The two-form .~h,2) is symplectic on ~'h,2, regular in the U3 WP 

interior, and extending as a current to the boundary, therefore, regarded as a map 
from T*~h,2 to T~Ch,2, I- ~h, 2))-1 has zeroes only on 0~ZCh,2. Furthermore, since ~WWp 

. i .(h, 2)~-1 _ (h, 2) ;o a K/ihler form, the Hamiltonian vector field is given by tw wp ) dH so that U)Wp xo 
the flow of the Hamiltonian vector field has critical points at d~ZCh, 2. Let us assume 
that D H  applies to the integral (18) and, furthermore, it receives a contribution only 
from the critical points in the component of 0~'h, 2 whose factor contains an even 
number of punctures. Then one expects 

((~o)2)h+1 

1 ; ~  ((D (h,4) ~3h+ 1 e - n  
~ h + l ( 3 h +  1)! __h,4 WP ! "31- 

--~1[ 1 f ~  1 
.st_ flh+ l ( . (h-k + l ,2))3(h-k)+ 2 e - H  

k [ 3 ( h  - -  k )  + 2 ] !  ~ . . . . . .  tU'we 

3k - 1)] ~.~ {rOwe J e - n  

h 
~---~h+l ( ( C O ) 4 ) h  "t- f lh+l 2 < ( ~ O ) 2 > h - k + l  <((~O)2>k' (19) 

k= l  
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where eh+l, flh+l are possibly t-dependent coefficients. One can remark upon the 
analogy with the recursion relations derived from KdV in topological gravity. Let us 
introduce the cohomology classes [;7 ~n. kl] e H 2 (~/h. Z), k = 0 . . . . .  h, Poincar6 dual of 

"7[h-1 .4 ,  ~'~h-k, 2 X ~7/[k, 2, k ~- 1 ..... h. Introducing the normalized Weil-Petersson 
volumes ak., and using (5), one obtains for the asymptotic behaviour of the 
correlations, 

( ( ~ O ) 2 ) h +  1 

1 ~ t .(h+l.2)]3h+l A 
~- - -  \ t o  W P  ! 

(3h + 2)! J.~ . . . .  

25h 2 - -  1 ((~(JO)2)htl(h+l.0) -~- 
A ~ h + l  4 ah~, 

h )k q(h+ 1.k) 1 + fln+l ~ ((CO)2)h-k+l ((C~ . (20) 
k = l  ah-k+l ,2  ak, 2 

Since the asymptotic expression of ((Co) 2)h, evaluated at t = l, is equal to --Zh, by 
setting t = 1 in (20), we derive 

f (. (h, 2)~3h-2 (D(h) ~' ~COWp ) A (21) Zh ( 3 h -  1)! e~.~ 

with ~0 th} a two-form given by 

25h 2 - 1  Zh q{h+l.0}_ 
09(h+ l) ~ 0~h+l 4 ah. 4 

-- flh+l ~ Z h - k + l  Zk  ~](h+l.k), (22) 
k= l  ah-k+l ,2  Ok. 2 

exhibiting the same structure of the two-form .th+l) introduced in the Ansatz (6) co L 
with the coefficients .(h+x) given by (13). c k 

6. The above results can be seen as a first step to recovering the full structure of 
Liouville theory. To see this, note that divisors at infinity of moduli spaces are 
related to determinant line bundles 2k and Weil-Petersson two-form ~Owp. For 
example, in ~/h one has for h > 2 [11] 

1 CI(;oH) = 2-~ [-fiOWP/~2] + ~ O o  + 14D~ + ~2202 + "" + 12 Oth/21, (23) 

where 2n = 21 is the Hodge bundle. The structure (23) together with the Mumford 
isomorphism 2k ~ )6k2-6k+1 are basic in the description of the Polyakov volume 

form dT[ h of the critical bosonic string [16, 17] 

= ~ d~Zh, (24) Z 
g /th 
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where drch = e pt2-2h) I~12, with # the Mumford form. The Weil-Petersson volume 
form is associated to the ghost zero modes, whereas sections of determinant line 
bundles 2k arise from path integral on b-c systems of weight k. In the description of 
the algebraic-geometrical structure of the specific heat, we recovered the divisors at 
infinity and the Weil-Petersson two-form. Generalizing the structure (23) to the case 
of ~'h,n, one could expect to be able to describe the cohomology structure of Zh 
directly in terms of the Weil-Petersson two-form and determinant line bundles, and 
then to recover the structure of the Liouville path-integral, problem pioneered in [1], 
associated to matrix models. In other words, this suggests that it could be possible to 
reconstruct the full structure of the theory starting from nonperturbative results and 
then going back to the continuum formulation. 
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