The effect of a subcutaneous bolus injection of 2 micrograms magnitude of Ac,Tyr1,D-Phe2-GRF(1-29) amide, a specific VIP antagonist (VIP-A), on the hypothalamo-pituitary-adrenocortical (HPA) axis were investigated in both normal and ether- or cold-stressed rats. Blood concentrations of ACTH, aldosterone (ALDO) and corticosterone (B) were measured by specific RIA 1, 2 or 4 h after VIP-A injection. VIP-A administration to normal rats strikingly lowered the plasma concentration of ALDO, without significantly affecting those of ACTH and B. Ether and cold stresses notably raised the blood levels of ACTH, ALDO and B, and these rises lasted unchanged until 4 h. VIP-A did not affect the response of HPA axis to ether stress, but provoked a marked depression of that to cold stress. In light of these findings the following conclusions can be drawn: (i) endogenous VIP does not regulate HPA-axis function under basal conditions, but it plays a pivotal role in the mechanisms involved in the activation of HPA axis induced by cold exposure; and (ii) endogenous VIP exerts a tonic stimulatory action on ALDO secretion, probably by acting directly on the adrenal zona glomerulosa.
EVIDENCE THAT ENDOGENOUS VASOACTIVE-INTESTINAL-PEPTIDE (VIP) IS INVOLVED IN THE REGULATION OF RAT PITUITARY-ADRENOCORTICAL FUNCTION - IN-VIVO STUDIES WITH A VIP ANTAGONIST
TORTORELLA, CINZIA;
1994
Abstract
The effect of a subcutaneous bolus injection of 2 micrograms magnitude of Ac,Tyr1,D-Phe2-GRF(1-29) amide, a specific VIP antagonist (VIP-A), on the hypothalamo-pituitary-adrenocortical (HPA) axis were investigated in both normal and ether- or cold-stressed rats. Blood concentrations of ACTH, aldosterone (ALDO) and corticosterone (B) were measured by specific RIA 1, 2 or 4 h after VIP-A injection. VIP-A administration to normal rats strikingly lowered the plasma concentration of ALDO, without significantly affecting those of ACTH and B. Ether and cold stresses notably raised the blood levels of ACTH, ALDO and B, and these rises lasted unchanged until 4 h. VIP-A did not affect the response of HPA axis to ether stress, but provoked a marked depression of that to cold stress. In light of these findings the following conclusions can be drawn: (i) endogenous VIP does not regulate HPA-axis function under basal conditions, but it plays a pivotal role in the mechanisms involved in the activation of HPA axis induced by cold exposure; and (ii) endogenous VIP exerts a tonic stimulatory action on ALDO secretion, probably by acting directly on the adrenal zona glomerulosa.File | Dimensione | Formato | |
---|---|---|---|
8.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Accesso gratuito
Dimensione
489.99 kB
Formato
Adobe PDF
|
489.99 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.