An understanding of the dynamics of large wood (LW) in mountain channels provides the basis for evaluating natural morphological patterns as well as managing potentially hazardous wood transport during flood events. Few studies have investigated the distribution of LW in managed streams of the Alps across a wide spatial scale. This paper presents extensive field measurements of LW storage and channel morphology carried out in 13 channels of the Eastern Italian Alps with drainage areas ranging from 1.2 to 70 km2, mean bed slope between 0.03 and 0.38, and channel width between 2 and 20 m. More than 9000 LW elements were measured in the 33 reaches surveyed. A geostatistical, geographic information system (GIS)-based model for wood recruitment from hillslope instabilities was also developed and applied to the study basin. LW storage in the study channels results as being much lower than in seminatural basins of comparable size and climate, and only basins characterized by extensive mass wasting processes contain high wood loads with relevant morphological consequences. The statistical analysis of LW storage at the reach scale indicates that unit stream power is apparently the most significant hydromorphological factor influencing LW storage, in agreement with studies in other world regions. However, we argue that the effect of unit stream power on LW storage is not only linked to flow transport capacity but also derives from its association with LW supply and valley morphology. Both the GIS model and statistical tests on field data indicate that hillslope instabilities connected to the channel network dominate the LW recruitment volume and the distribution of in-channel wood storage.

Large wood storage in streams of the Eastearn Italian Alps and the relevance of hillslope processes

RIGON, EMANUEL;COMITI F;LENZI, MARIO ARISTIDE
2012

Abstract

An understanding of the dynamics of large wood (LW) in mountain channels provides the basis for evaluating natural morphological patterns as well as managing potentially hazardous wood transport during flood events. Few studies have investigated the distribution of LW in managed streams of the Alps across a wide spatial scale. This paper presents extensive field measurements of LW storage and channel morphology carried out in 13 channels of the Eastern Italian Alps with drainage areas ranging from 1.2 to 70 km2, mean bed slope between 0.03 and 0.38, and channel width between 2 and 20 m. More than 9000 LW elements were measured in the 33 reaches surveyed. A geostatistical, geographic information system (GIS)-based model for wood recruitment from hillslope instabilities was also developed and applied to the study basin. LW storage in the study channels results as being much lower than in seminatural basins of comparable size and climate, and only basins characterized by extensive mass wasting processes contain high wood loads with relevant morphological consequences. The statistical analysis of LW storage at the reach scale indicates that unit stream power is apparently the most significant hydromorphological factor influencing LW storage, in agreement with studies in other world regions. However, we argue that the effect of unit stream power on LW storage is not only linked to flow transport capacity but also derives from its association with LW supply and valley morphology. Both the GIS model and statistical tests on field data indicate that hillslope instabilities connected to the channel network dominate the LW recruitment volume and the distribution of in-channel wood storage.
2012
File in questo prodotto:
File Dimensione Formato  
2010WR009854-LW Cordevole-Alleghe.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso libero
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/105654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 71
  • OpenAlex ND
social impact