In the framework of Nelson’s stochastic mechanics [E. Nelson, Dynamical Theories of Brownian Motion (Princeton University, Princeton, 1967); F. Guerra, Phys. Rep. 77, 263 (1981); E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985)] we seek to develop the particle counterpart of the hydrodynamic results of M. Pavon [J. Math. Phys. 36, 6774 (1995); Phys. Lett. A 209, 143 (1995)]. In particular, a first form of Hamilton’s principle is established. We show that this variational principle leads to the correct equations of motion for the classical particle, the Brownian particle in thermodynamical equilibrium, and the quantum particle. In the latter case, the critical process q satisfies a stochastic Newton law. We then introduce the momentum process p, and show that the pair (q,p) satisfies canonical‐like equations.

Lagrangian dynamics for classical, Brownian and quantum mechanical particles

PAVON, MICHELE
1996

Abstract

In the framework of Nelson’s stochastic mechanics [E. Nelson, Dynamical Theories of Brownian Motion (Princeton University, Princeton, 1967); F. Guerra, Phys. Rep. 77, 263 (1981); E. Nelson, Quantum Fluctuations (Princeton University, Princeton, 1985)] we seek to develop the particle counterpart of the hydrodynamic results of M. Pavon [J. Math. Phys. 36, 6774 (1995); Phys. Lett. A 209, 143 (1995)]. In particular, a first form of Hamilton’s principle is established. We show that this variational principle leads to the correct equations of motion for the classical particle, the Brownian particle in thermodynamical equilibrium, and the quantum particle. In the latter case, the critical process q satisfies a stochastic Newton law. We then introduce the momentum process p, and show that the pair (q,p) satisfies canonical‐like equations.
File in questo prodotto:
File Dimensione Formato  
JMP1996.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Accesso gratuito
Dimensione 842.43 kB
Formato Adobe PDF
842.43 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/100426
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact