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Lagrangian dynamics for classical, Brownian,
and quantum mechanical particles

Michele Pavon®
Dipartimento di Elettronica e Informatica, Universitti Padova, via Gradenigo 6/A,
35131 Padova, Italy and LADSEB-CNR, Italy

(Received 13 December 1995; accepted for publication 6 March)1996

In the framework of Nelson’s stochastic mecharjiés Nelson,Dynamical Theo-

ries of Brownian MotionPrinceton University, Princeton, 196F. Guerra, Phys.
Rep.77, 263(1981); E. Nelson,Quantum FluctuationgPrinceton University, Prin-
ceton, 198% we seek to develop the particle counterpart of the hydrodynamic
results of M. Pavor{J. Math. Phys.36, 6774 (1995; Phys. Lett. A209 143
(1995]. In particular, &first form of Hamilton’s principle is established. We show
that this variational principle leads to the correct equations of motion for the clas-
sical particle, the Brownian particle in thermodynamical equilibrium, and the quan-
tum particle. In the latter case, the critical procegssatisfies a stochastic Newton
law. We then introduce the momentum processand show that the pairmg(p)
satisfies canonical-like equations. ®96 American Institute of Physics.
[S0022-24886)03507-4

I. INTRODUCTION

In a recent paperwe established the stochastic mechanics counterpart of the séoaird-
dynamig form of Hamilton’s principle. The resulting variational picture is much richer and of a
different nature with respect to the one previously considered in the literature. This paper deals
with the first(particle form of Hamilton’s principle. Our principle may be viewed as a strength-
ening of Ref. 2(pp. 73—75 which in turn was a modification of Yasue’s original wotkurther
related work may be found in Ref. @hap. 5. We adopt kinematical variables and stochastic
derivatives different from Refs. 3 and 2. The critical stochastic process is not Markovian, but
becomes Markovian if we adjoin certain mean-forward and mean-backward velocities. This pic-
ture is consistent with the classical mechanical picture.

For the purpose of later reference and comparison, we outline below one of the main results
of Ref. 1. Assume that the motion of a nonrelativistic, spinless particle can be described by a
stochastic process={q(t);t,<t<t,}, taking the values itk and having a stochastic differential
of the form

1/2
dw, , (1)

dq(t)=B(t)dt+ =

where theforward drift 8(t) is a measurable function §§(7);ty<7<t}, w, is aWiener process
with increments independent at each time of the pasy sétisfyingE{dw, dw’ }=1dt. If the
diffusion has finite kinetic energy

ty
E[f B(t)-ﬁ(t)dr}<w,
to

then we also have the reverse-time representation

3E|ectronic mail: pavon@ladseb.pd.cnr.it
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3376 Michele Pavon: Lagrangian dynamics for quantum particles

112
dq(t)=y(t)dt+ E) dw_, (2

wherey, called thebackward driff depends at each time only on the future of the progeasd

w_ is another Wiener process whose increments are, at each time, independent of the future of the
procesg) and satisfyE{dw_dw’ }=1,dt. Whent tends to zero, botjg andy tend to the classical
velocity. Hence, theurrent velocityv (t): =3[ 8(t) + y(t)] corresponds to the classical velocity,

and theosmotic velocity (t): =3[ 8(t) — ¥(t)] tends to zero in the semiclassical limit. In order to
develop the Lagrangian and Hamiltonian formalism in stochastic mechanics in a way that natu-
rally extends the classical case we are then naturally/®led introduce thecomplex-valuedre-

locity (quantum velocity v4(t):=v(t) —iu(t) that simultaneously capturegt) andu(t). From

Egs.(1) and(2) we get

1/2
E) [dw,+dw_], 3

dg(t)=v(t)dt+ >

1/2
O=u(t)dt+ = E) [dw, —dw_]. (4)

2

Multiplying the second equation byi, and then adding it to the first, we finally get

dq(t)=[v(t)—iu(t)]dt+dw, (5

where

1/2
dw= > (E) [(1-i)dw, +(1+i)dw_].
For the properties of thguantum noise dwsee Ref. 1(Sec. VII). The differential(5) of q,
differently from Egs.(1) and(2), enjoys thetime reversal invariancgroperty, see Ref. 6.

Consider the situation where the particle is subject to an external conservative force deriving
from the sufficiently regular potential(x). Let L(x,y):=3my-y—V(x) be the Lagrangian de-
fined onR3x (3, and let?” denote the family of finite-energy;*>-valued stochastic processes on
[to.t;]. For ¢, a complex-valued function ofi® such thatyy(x):=expi/#%@(x) hasL? norm 1,
consider the variational problem

extremiztg;qe 7E[ fttlL(x(t),vq(t))dtnL ©o(X(tg)) (6)

subject to the constraint that the finite-energy, possibly non-Markovian diffusioes quantum
velocity v, and a prescribed probability density at timet,. We then have the following result
(Ref. 1, Sec. VII).

Theorem 1: Suppose that the solutidni(x,t),t e [tg,t;]} of the Schrdinger equation

oy it i
= 2m Ay— gV(X)df, (7)

with initial condition ¥(x,tg) = ¥o(X) never vanishes and satisfies

J. Math. Phys., Vol. 37, No. 7, July 1996
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Michele Pavon: Lagrangian dynamics for quantum particles 3377

El f %IV log w(x(t).t)[?dt] <o
to

for each finite-energy diffusion x di,,t;]. In Problem (6), letp;(x)=|(x,t;)|%. Then, there
exists a stochastic proce$s* (t);t,<t<t,}, called the Nelson process, solving together with its
quantum driftl/mV#/i log ¢{x* (t),t) Problem (6)

It is worthwhile to observe that the Markov property of the extremal processdsudt of the
variational principle. Also notice that the probability densik,t) of q(t) satisfies Born’s rela-
tion p(x,t)=|(x,1)|% The existence of the Nelson process corresponding to a given solution
¥(x,t) of the Schrdinger equation is, in the general case whgfr,t) can vanish, a challenging
question that has generated considerable interest, see, e.g., Ref¢Chap! I\), and 8, and
references therein. The existence of the Nelson probability measure is established in Ref. 1 under
the present assumptions by means of the Girsanov transformation theory, cf., e.g.(Gtefp%.

The quantum Hamilton principle just recalled was also shown in Ref. 1 to be a consequence of two
other variational principles of the min—max type. The first one, calledstule-point action
principle, contains as special cases both the Guerra—Morato variational prificipie Schre

dinger original variational derivation of the time-independent equation, see, e.g., Ref. 11118.

The second, called theaddle-point entropy production principleoncerns the production of
configurational entropy. The Nelson process appears thernsaddie-point equilibrium solution

for both stochastic differential games.

In this paper, we develop thiirst (particle) formof Hamilton's principle in stochastic me-
chanics. We then show that this variational principle can be applied to a variety of conservative
systems such as the classical particle, the Brownian particle in thermodynamical equilibrium, and
the quantum particle by simply changing the family of trial motions.

The paper is outlined as follows. In Sec. Il we collect some basic facts about the kinematics
of stochastic processes. In Sec. lll, we develop a stochastic calculus of variations. The correspond-
ing Hamilton’s principle is then applied in Sec. IV to various conservative systems. In Sec. V, we
develop some basic elements of the Hamilton—Jacobi theory in stochastic mechanics.

II. BACKGROUND ON THE KINEMATICS OF STOCHASTIC PROCESSES

Let (),#,P) be a complete probability space, and.let=(_#,), t e [ty,t4], be a nondecreas-
ing family of sub o-algebras of#. Let x:={x(t);te[tqy,t;]} be anR"-valued, second-order,
#-adapted stochastic process, namely the componenttpfare . Z,-measurable for alt in
[to,t;]. Suppose thak is a.s. and mean-square continuous. We say xha mean-forward
differentiablewith respect to the filtration# if the limit

(D) (t)=lim E
h\,0

exists fort [tg,t;), and forms a continuous curve irf(2,#,P). In this case, it may be shown
along the lines of Ref. 12Sec. 1} thatx is a continuous semimartingale of the form

t 4 Y,
x(t)=x(t0)+J (D-/x)(s)ds+m/(t), (8
to
where the integral is a Riemann integral L'uﬁ(ﬂ,‘é’,P) (Ref. 13 p. 10, and m‘f is a square-
integrable, continuous#,-martingale withm-’(t,) = 0 a.s.(for the definitions, see, e.g., Ref. 14,

p. 78. Similarly, if .#:=(%,), te[ty,t;], is a nonincreasing family of sub-algebras of* to
which x is adapted, we say thatis mean-backward differentiableith respect to% if the limit

J. Math. Phys., Vol. 37, No. 7, July 1996
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3378 Michele Pavon: Lagrangian dynamics for quantum particles

(D7%)(t)=lim E
h\,0

X(t)—x(t—=h) |
wegnl,)

exists forte (to,t;], and forms a continuous curve ip3(Q,#,P). In that casex admits the
backward semimartingale representation

X(t)=x(ty)+ J:(D;”x)(s)ds— m”(t), 9

wherem” is a reverse-time, square-integrable, continuotismartingale withm”(t;) = 0 a.s.
Notice thatD‘fx andD”x depend crucially on the filtrationsZ and.%. Obviously, forx to be
mean-square differentiable,Z, must contain.7;:=o{x(s);to<s<t} and .%, must contain
G i=o{x(s);t<s=<tq}. If x is mean-forward and mean-backward differentiable with respect to
7:=(7,) and £:=(%,), respectively, we calB(t): = (D/x)(t) the forward drift of x and
y(t): = (D”x)(t) thebackward driftof x. Of course, for mean-square differentiable processes, we
have 8(t) = y(t) =x(t).

For stochastic processes that are simultaneously mean-forward and mean-backward differen-
tiable with respect to the filtrationsZ and.#, we can introduce two more stochastic derivatives
(using the notation introduced in Ref.)1By

(DX)(t)+(D7X)(1)
5 ,

(D 7)(1): =

(D/x)(H)— (D7%)(1)

(8D "7x)(t): = >

In particular, v(t):=(D”“x)(t)=(B(t) + ¥(t))/2 and u(t):=(5D"7x)(t)=(B(t) — ¥(1))/2
are thecurrent drift and theosmotic driftof x, respectively. Representatio(® and(9) now give

x(t)—x(s)= ft(D %) (o) do+ % [m/(t)—m7(s)+ m_A(t)—m7(s)], (10)
t 1 ,
o:J (5D“’”'”x)(cr)da+§[m‘f(t)—m‘f(s)—m,./f(t)er;”(s)]. (12)

Multiplying Eq. (11) by —i, and then adding it to Eq10), we finally get a generalization of Eq.
5),

x(t)—x(s)= J:((D —i6D) x)(o)do+m (1) —m>(s), (12

where
m () =3 (1—)my(t) + (1+i)Hm7(1)].
As for the diffusion processes of Sec. I, we ag|(t): = ((D —i 8D)”“x)(t) the quantum driftof
x anddm”“(t) the quantum noise
Remark 1: Notice that whef(D —i 8D)"”x) = f(x(t),t), x is a Markov process. Indeed, it
admits a forward differential given by

dx=[Rf(x(t),t) — FF(x(t),t)]dt+dm/,

J. Math. Phys., Vol. 37, No. 7, July 1996
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wherefR and § denote real and imaginary part, respectively

We now state Nelson’s product rule.

Lemma 1: Let xy:[t,t;]—L3(Q,%,P) be twoa.s.and mean-square continuous stochastic
processes. Suppose that x and y are simultaneously mean-forward and mean-backward differen-
tiable with respect to the filtrationsZ and. 7, respectively. Suppose, moreover, that the processes
D-’x, D7x, D7y, and Dy have continuous paths. Then

ty /
E{X(tl)'Y(tl)_x(to)'y(to)}:E[ ft [(D‘Jx)(t)-y(t>+x(t>-<D'fy>(t>]dt]. (13

Exchanging the roles of andy in Eq. (13), adding and subtracting, we get two more formulas
corresponding to Eq$10) and (11).
Corollary 1: Let x and y be as in the previous lemma. Then

t
E{X(tl)'y(tl)—X(to)'Y(to)}:E[ ft T(D77%)(1) - y (1) +x(1) (D'/"-”y)a)]dt], (14)

0= E[ [t 500 -y +x0. (5D,/z,»y)(t)]dt}_ (15
to

Multiplying Eq. (15) by —i, and then adding it to the first, we finally get a fundamental integration
by parts formula related to representatid2).
Corollary 2: Let x and y be as in the above lemma. Then

E{x(t1)-y(t1) —x(to) - y(to)}

= E{ ftl[((D —i8D) " 7X)(1) - y(t) +X(t) - ((D+i D) 7y)(t)] dt] . (18
to

So far we have dealt witRk"-valued stochastic processes. A moment’s thought, however, reveals
that everything we have done holds true if the processe§avalued.

We now consider the case where the processann-dimensional, finite-energy Markovian
diffusion with constant diffusion coefficient’l,,. We denote byb, (x(t),t) andb_(x(t),t) its
forward and backward drifts, respectively. Moreover, let

o (X(D) )= b+(X(t)-t)42rb-(X(t),t)

and

b, (x(t),t) —b_(x(t),t)
2

u(x(t),t)=

denote the current and osmotic drifts. We then have Nelson’s relation

0_2
u(x,t)= > V log p(x,t), (17

where p(x,t) is the sufficiently smooth probability density aft) [set u(x,t) equal to zero

wheneverp(x,t) =0]. Moreover, the Fokker—Planck equation governing the evolutiom of

LN G
St TV (bip)==Ap,

J. Math. Phys., Vol. 37, No. 7, July 1996
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may be rewritten as aontinuity equatiorof fluid dynamics
ap
E—FV-(vp):O. (18

As before, let7,:=o{x(s);tp<s<t} and &;: = o{x(s);t<ss<t;}. Also let f(x,t):R"X[tq,t;]

—R be a function with compact support of clag$®. From the two changes of variables formulas
(Ito’s rules corresponding to the forward and backward representations for the increments of
[Egs.(1) and(2)] we get(Ref. 12, p. 104

. J a?
(D‘jf(x(t),t))z[(ﬁ+b+~v+?A)f (x(1),1), (29

2
(DZH(x(1),1)) = %+b~V—%A)f (X(t),1). (20)

The semisum and the semidifference of E4®) and(20) give

. J
(D7 1(x(1),1) =| 7 +o()- V [f(x(1),1), (21

We can now establish a rather interesting formula.
Lemma 2: Let kt) be a finite-energy Markovian diffusion whose never vanishing probability
densityp is of class G. Then

[DZ(DZ0](H)—[DX(DZX](1)=2{[D7(8D”*x)](1)+[8D”“(D”*x)](1}=0, as.

(23
for all t e[tp,t4].
Proof. From Eq.(18), we get
d log p
5 =—V.v—v-V log p.

Using Eq.(17), we get

N Vo0V 24

- 7 Av-uVu-u-Vu (24

In view of Egs.(21) and(22), Eqg. (24) can now be written as
(D77u)(t) +(8D”v) (1) =[D7“(8D7))1(1) +[5D7*(D7"x)]()=0,  (25)
which is Eq.(23). O
Equation(24) was derived by Nelson in his early wofRef. 12, Eq(5) on p. 104. Curiously,
nobody seems to have noticed the straightforward reformulation ofZ22j.given by Eqs.(25)

and(23). The corresponding hydrodynamical equatitfadelung equationoccurs in the context
of the saddle-point entropy production principlef. Ref. 1, Sec. V.

J. Math. Phys., Vol. 37, No. 7, July 1996
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lll. STOCHASTIC CALCULUS OF VARIATIONS

Let .2(Xg,X;) denote the family of R"-valued, mean-square continuous processes
x={x(t);te[ty,t1]} such thatx(ty) =X, a.s.,x(t;) =X, a.s., and satisfying the following two
properties.

(i) x is mean-forward and mean-backward differentiable with respect to its past and future
filtrations.7=(7;) and ¥=(%,), respectively; we denote b¥(t) the augmented process

X(t)
X(t)=| B(t)
(1)

(i) The proces is a simultaneously mean-forward and mean-backward differentiable with
respect to the filtrationsF=(F,) and G=(G;), where F;:=da{X(s);to=<s<t} and
G =a{X(s);t=s=<t,}.

Obviously, 7;CF; and 5;CG;. In order to avoid any confusion, we stress the fact that, in
general, D x)(t) # (D7x)(t) = B(t) and D®x)(t) # (D“x)(t) = y(t). Consequently,®®x)

X(t) # v(t) and (SDFCx)(t) # u(t). Also notice thatZ2(x,,x;) contains as a proper subset the
family of finite-energy Markovian diffusions with the prescribed end-point marginals.

For eachxe.Z1(xq,X;), we define the family ofvariations y of x to be the set/(x) of
R"-valued, mean-square continuous procegses$y(t);te[tq,t;]} satisfying the two properties:

(i) y(tg)=y(t;) =0 a.s.;(ii) y is simultaneously mean-forward and mean-backward differentiable
with respect to the filtrations and G, respectively.

Remark 2: Let fR"X[ty,t;]—R", having compact support ift"X (to,t,), be of class €.
Then y(t): =f(x(t),t) belongs toZ/(x). These are precisely the variations considered by Nelson
in Ref. 3.

Let L:R"XC"XC"X[tq,t,]—C" be a sufficiently regular function. Nameli(x,z;,z,,t) is
continuously differentiable with respect ¥oandt, entirely as a function of; and entirely as a
function ofz,. Definel:21(Xq,X;)—C by

[(x)= E[ JttlL(x(t),((D—i5D)F'Gx)(t),((D+i5D)F'Gx)(t),t)dt .
0

Notice that in this action integral appear the conditional derivatives relative to the pair of filtra-
tions (F,G) rather than with respect {07,.%). Also notice that our choice of kinematical variables
differs from those previously considered in the literatiRefs. 3, 2(pp. 73-7%, and 4(Chap. 5.
Let doml denote the subset af in .2(Xg,X;) such thatl (x) <.

Definition 1: The process «doml is critical for | if for all processes y #/(x) we have

L(x+y)—=1(x)=o(|yl},

where

51
||Y||23:E( ft [y(t)-y(t)+(DFCy)(t)- (DFCy) (1) + (8D Cy)(t)- (6DFCy)(1)]dt,; .
0

We are now ready for the fundamental theorem of stochastic calculus of variations.
Theorem 2: The stochastic processedoml is critical for | if and only if it satisfies the
Euler-Lagrange equations

J. Math. Phys., Vol. 37, No. 7, July 1996
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D+i 5DFG&L+D 8D o ot aL—o 26
( i6D) ( i ) P pviln a.s. (26)

for almost all te [tg,t4].
Proof: Let xedoml be critical forl, and lety e %/(x) be a variation ofx. By Taylor's
formula
dt}.

Applying Eq. (16), and taking into account the fact thatvanishes at the end points, we get
aL aL
R F.G
fto X (D+i6D) ((9 yd]

Since the expectation in E€R7) must vanish for aly € 7/(x), it follows that both the real and the
imaginary parts of

oL oL oL
— y+—-((D— |5D)F'Gy)+5-((D+i5D)F*Gy)
2

I(><+y)—I(X)=0(||y||)+E[ft

(x+y)=1(x)=o(|y])+E

—(D- |5D)FG< &L>

(27)

i)

must vanish. Conversely, if E§26) holds,x is critical because of Eq27). O
Corollary 3: Let L(x,2;,2,,t):=3mz-z,— V(x), where V is of class € Then xedoml is
critical for | if and only if the stochastic Newton law

ﬁ—(D+|5D)FG(§L)—(D—|5D)FG( o

m[((DFCDFC— sDFCSDFC)x) (1) ]=—VV(X(1)) a.s. (29

for all t e [tq,t4].
Proof: Notice that in this case

% (x(1),((D—=i6D)FCx)(1),((D+i8D)FCx)(t),t) = 2 ((D+i6D)FCx)(1),
1

% (X(t),((D—i6D)FCx)(t),((D+i6D)FCx)(t),1)= 2 ((D—i8D)FSx)(1).
2
From Eg.(26), we get thai is critical for | if and only if

2 [((D+i6D)"S(D+i6D)"C+(D—i6D)FS(D—i6D)C)x)](t)=—VV(x(t)), a.s.

(29
and Eq.(28) follows. O
Remark 3: Notice that Egs. (28) and (29) can also be written in the form
m FNG L NGNF -
5 (DL DZ+DZD)x)(H]=— VV(X(1)). (30)

The comparison between the left-hand sides of Egs. (29) and (30) gives the long sought probabi-
listic meaning for the Nelson stochastic acceleration, cf. Ref. 2, Problem 6, p. 133. Nelson's
acceleration may also be viewed as the real part(@f — i 6D)™S(D — i 6D)F®)x) which occurs

in the global Newton’s law (40) below

J. Math. Phys., Vol. 37, No. 7, July 1996
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IV. HAMILTON’S PRINCIPLE

We now require that the conservative motion of a particle of mage critical for the action
| introduced in Sec. Ill.

A. Classical particle

Consider a classical particle subject to an external conservative force induced by the potential
function V. As trajectories we take deterministie? functions. Hence7,=F,=%,=G,={Q,J},
namely the trivial o field. In particular, x, and x; are two points inRR3. Moreover,
(DFSx)(t) =x(t), (DFCx)(t)=0, and(D™®x)(t) =X(t). Thus, Corollary 2 gives that s critical
for | if and only if Newton'’s law

mX(t) = — VV(x(1)) (31)

is satisfied for allt e [tq,t,].

B. Classical particle with uncertain end points

Suppose we have a classid&? trajectorie particle with uncertain initial and terminal
positions. This uncertainty is described through initial and final probability dengijiesd p,,
respectively. Letx, and x, be distributed according tp, and p;, respectively. Then, for all
admissible motiong we have7,=F,=a(xo) and ¥,=G,=o(x,). As before,Z"°x(t) =x(t), and
67FCx(t)=0. Thus, by Corollary 2, the stochastic procassatisfyingx(to) =X, a.s.,x(t;) =X,
a.s. withC? paths is critical forl if and only if Eq.(31) holds for all times with probability one.

C. Brownian particle

Consider a Brownian particle in thermodynamical equilibrium. We assume that its motion
may be described by a stochastic proceswith differentiable sample paths and that forms a
diffusion with constant diffusion coefficient together with its derivative Hence, we have
x(t)=B(t)=y(t)=2"Cx, and 67 °x=0. Moreover, F,=a{x(s)X(s);tp,=<s<t} and
G,=c{x(s),x(s);t<=s<t,}. By Corollary 2,x is critical for | if and only if

m(DF®x)(t)=—VV(x(t)) a.s. (32

for all te [tg,t,]. It follows, in particular, that the critical processis such that X,x) is Markov-
ian (see Remark )1

Theorem 3: The stochastic process x in the above described class is critical for | if and only
if the forward drift of xis given by

(DFX) (1) = — AX(t) — % VV(x(1)), as., (33

wherex =o?m/(2kT) and ¢? is the diffusion coefficient of.x
Proof: By the Gibbsian postulate, the equilibrium distribution is the Maxwell-Boltzmann
distribution

— I mXx-x—V(x)

p(x.x)=c exp[ T (34

Moreover, since
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X(t)
(X(t)

is Markovian, Nelson’s relatiofil7) between the forward and the backward driftofields

For E- o? :
(D™X) (D) =(D5x)(1) — = Vi log p(x(1),x(1)). (39

Equations(34) and (35) now give

. . m .
(DF’GX)(t)=(DEx)(t)+02mx(t). (36)

If x is critical, then Eqs(32) and(36) give Eq.(33). Conversely, if the processhas forward drift
of x given by Eq.(33), and has the invariant densit§4), then it satisfies the Newton la{82), see
Refs. 1(p. 102 and 16. O

Remark 4: It follows, in particular, that the Markovianess(&fx), the form of the forward
drift of x in the Ornsteir-Uhlenbeck model of physical Brownian motion (Ref. 12, Chaps. 9 and
10), and its relation to the diffusion coefficie(Einstein’s fluctuation—dissipation relatipare
consequences of the Gibbsian postulate and of the Newton law (34). Conversely, given that the
forward drift of X lies in a certain class, necessary and sufficient conditions can be given for the
particle to obey the MaxwelBoltzmann distribution in equilibrium, see Ref. 17, Sec. llI

D. Quantum particle

Consider a nonrelativistic, spinless quantum mechanical particle moving in a force field. As
class of motions we take the subclass#txg,x;) of the finite-energy diffusions with constant
diffusion coefficiente®=#/m. In this case, the action is given by

I(X)ZJ:lE m((D—i6D)F®x)(t)- ((D+i8D)"Cx)(t)—V(x(t))|dt. (37

Thenx satisfies Hamilton’s principle if and only if it satisfies the stochastic Newton(R8y or,
equivalently, Eq(29) which may be rewritten as follows

mA[((D—i6D)"S(D—i6D)"C)x)](t)=—-VV(x(t)), a.s. (39
Next we postulate
[(DFCsDFC+ sDFCDFC)x](1)=0. (39
Putting together Eqg39) with (38), we get
m[((D—iéD)FE(D—isD)FC)x)](t)=—VV(x(1)), a.s. (40)

Assumption(39) simply means that the acceleration in the left-hand side of#.must be real.
Also notice that Eq(39) is precisely Eq(23) for the position process. Finally notice that the
extremizing process is such that the augmented process

X(t)

((D—i8D)F%x)(t) (1)

is Markovian. To see this, recall Remark 1 and observe that
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i F.G
X(t) ((D=i6D)™™x)(1)

(D—iD)Fex) | (D=

[o-1a0y°¢ )

The procesx by itself, however, is in generalon Markovian
We are now ready to introduce timeomentum processorresponding to such a process by

p(t):= j—; (x(1),((D=18D)"®x)(1),((D+i8D)"x)(t),t) =m((D—i D)™ x)(1),

pt):= j—ZLl (x(t),((D=18D)"Cx)(t),((D+i8D)7Cx)(t),t)=m((D+i D) Cx)(t).

Then Eq.(40) reads

((D—i6D)"Cp)(t)=—VV(x(1)),a.s. (42)
or equivalently
((D+i6D)FCp)(t)=—VV(x(1)),a.s. (43

Let H(x,y):=(1/2m)y-y+V(x) be theHamiltonian functiondefined onR*x (3, and writeq(t)
instead ofx(t) for the position of the quantum particle. We then get¢haonical-like equations

((D=i8D)"Cq)(t)=V,(q(t),p(t)), (44)
((D=i8D)"Cp)(t)=—V,(q(t),p()), (45)

or equivalently
((D+i8D)"Cq)(t)=V, H(q(t),p(t)), (46)
((D+i6D)FCp)(t)=—V,H(a(t),p(t)). (47)

The closest in spirit previous attempt to define the momentum process within stochastic mechanics
is Ref. 18. See Ref. 2, pp. 95-98 and Ref. 4, pp. 117+ikGurther work and discussion on this
topic.

We close the section with a comment. In Ref. (9110, Bohm and Hiley write concerning
Nelson’s stochastic accelerationlf'it could be made clear that this definition is physically or
kinematically plausible then Nelson’s approach would evidently have an important advantage
As observed in Remark 3, the Nelson acceleration may be viewed as the real part of the second-
order stochastic derivativéD —i 5D)F6(D —i D) ®)x) which occurs in Eq(40).

In Sec. V, we show that indeed the Nelson process associated with a particular solution of the
Schralinger equation satisfies the global Newton’s I@@). Hence, we feel that the results of this
paper, together with Refs. 12, 15, 2, 1, 6, clearly demonstrate the physical and kinematical
plausibility of Nelson’s acceleration.

V. ELEMENTS OF HAMILTON-JACOBI THEORY

Following Ref. 6, we now develop the basic elements of a Hamilton—Jacobi theory of sto-
chastic mechanicésee Ref. 15, Sec. 1 for a beautiful account of the classical theBoppose
{(x,1);to<t<t,} is a never vanishing solution of ti&chralinger equation
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oy it i
E—%Vlﬂ—%V(X)lﬂ

ThenS,(x,t):=%/i log ¥Ax,t) satisfies

asq ! VS, -VS,+V ' AS,=0 48
Tt am Yo VStV T 5 A5,=0. (48)

This is the Hamilton-Jacobi equationof stochastic mechanics. Indeed, we can now rephrase
Theorem 1 as follows. Suppog&,(x,t);to<t<t;} solves Eq.(48) with the initial condition
Sq(X;to) = ¢o(x), and satisfies

ty 5
E{ ft0|vsq(x(t),t)| dt]<oo

for all finite-energy diffusion on [tg,t4]. Let p1(X)= |exp(i/h)Sq(x,tl)|2. Then, there is a sto-
chastic procesf(t);tp<t=<t,}, called the Nelson process, solving together with its quantum drift
(1/m)V Sy(q(t),t) Problem(6). Corresponding to such &, we define themomentum fieldby
p(x,t)=VS§,(x,t), and the momentum process pyt):=p(q(t),t)=VS,(q(t),t). In Ref. 6 it
was shown that the procepét) has the same first and second moments as the quantum momen-
tum operator. It was also shown that the uncertainty relations admit a simple stochastic interpre-
tation in terms of the paird(t),p(t)).
Theorem 4: The pair(q(t),p(t)) satisfies the stochastic Hamilton equations (44) and.(45)
Proof: Let us first notice that ", g) (t) = (D'fq)(t) = b, (q(t),t). Indeed, sincg(t) is Mar-

kovian, so is
q(t)
X(t)=| by(q(t),t) |.

b_(q(t),t)
7|

We then have

(Df ()= fim E| LA

h\,0 h
_ q(t
h\0 b_(q(t),t)
~lim E —Q(Hhr:_q(t) q(t)]
h\,0

=(DZa)(t)=b,(q(1),1).

Similarly, we get D®qg)(t)=(DSq)(t)=b_(q(t),t). Hence, D"Cq)(t)=(D"“a)(t)
=v(q(t),t) and DCq)(t)=(sD”“q)(t)=u(q(t),t). We then have @ —isD)"°)q)(t)

= ((D—=i8D)”“)a)(t) =v(q(t),t) —iu(a(t),t) =vq(a(t),t) = (/M) VSy(q(t),t) = V,H(a(t),
p(a(t),t))=V,H(q(t),p(t)). To prove Eq.(45), recall from Ref. 1, Sec. VII that it(x,t) is a
complex-valued function with sufficiently regular real and imaginary parts, then

d if
dlé(a(t).0]=| - Fvq(a(®),t)- V=5 A1d(aq(t),)dt+Ve(q(t),t) - dw, (49
where dw=dqg—uv4(q(t),t)dt is the quantum noise correspondingdo Applying Eg. (49) to
p(a(t),t) =VSy(a(t),t), we get
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d i%
dip(a(t),n)]=| = +vq(a(t),t)- V- 2|_m V |VSy(a(t),t)dt+D(q(t),t)dw, (50

where the X3 matrixD hasijth entrydij(q(t),t)=(azlaxiaxj)sq(q(t),t). Replacingv 4(q(t),t)
in Eq. (50) with (1/m)VSy(q(t),t), and then employing Ed48), we get

dip(a(t),t)]=—VV(q(t))dt+D(q(t),t)dw. (53

Hence, the quantum drift gi(t) is —VV(q(t)) and Eq.(45) holds. O
By the same procedure, we can handle more gerisudiciently regulay Hamiltonian func-
tionsH(x,y,t) if Sy(x,t) now satisfies

aSquH VS, t iﬁA =0
7 (Xy q!) ﬁ Sq_ ]

and if we can construct a Markov procegsvith quantum drift

vq(a(t),y)=VyH(q(t),VSy(a(t),1),1),

and prescribed initial condition.
We now isolate a crucial step in the proof of Theorem 4. In view of @), define the
guantum acceleration fieldy the substantial derivative

d if
aq(x,t):= E+vq(x,t)-V— >m Alvg(x,1), (52
wherev(x,t) = (1/m)VSy(x,t). Using Eq.(48) in Eq. (52), we finally get
_ 1L VA% 53
34(x, )=~ — VV(x). (53

Equation(53) is the local form counterpart of E§40).

Remark 5: Lef ¢/(x,t);to<t<t,;} be a never vanishing solution of the Sctirmer equation
satisfying Carlen’s finite-energy condition (Ref. 7). Then the corresponding Nelson process satis-
fies Eq. (40) with end points distributed accordingpig{x) =|#(x,t)|? and p,(x)=| ¢ (x,t,)|2.

VI. DISCUSSION

In this paper, we have developed a particle form of Hamilton’s principle. We have then
applied the principle to various conservative systems only changing the class of admissible mo-
tions. In the case of a quantum particle, we have seen that the critical procadssfies the
stochastic Newton law40). This process is not Markovian, but the corresponding augmented
procesg41) is Markovian.

In Ref. 1, see also the outline in Sec. |, we have developed the second, hydrodynamic version
of Hamilton’s principle in the context of stochastic mechanics. The critical progessthere
Markovian. Indeed, it is the Nelson process. Introducing the momentum field, and then the mo-
mentum procesp as in Sec. V, we have obtained a pair of stochastic processes satisfying the
stochastic Hamilton equatiortd4) and (45).

If we agree that in a deterministic context Markovian means “satisfies a first-order differential
equation,” we see that the similarity with classical mechanics is striking. Much remains to be
done, however, to develop a satisfactory Lagrangian and Hamiltonian formalism in stochastic
mechanics even in the simplest case considered in this paper.
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