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Lagrangian dynamics for classical, Brownian,
and quantum mechanical particles

Michele Pavona)
Dipartimento di Elettronica e Informatica, Universita` di Padova, via Gradenigo 6/A,
35131 Padova, Italy and LADSEB-CNR, Italy

~Received 13 December 1995; accepted for publication 6 March 1996!

In the framework of Nelson’s stochastic mechanics@E. Nelson,Dynamical Theo-
ries of Brownian Motion~Princeton University, Princeton, 1967!; F. Guerra, Phys.
Rep.77, 263~1981!; E. Nelson,Quantum Fluctuations~Princeton University, Prin-
ceton, 1985!# we seek to develop the particle counterpart of the hydrodynamic
results of M. Pavon@J. Math. Phys.36, 6774 ~1995!; Phys. Lett. A209, 143
~1995!#. In particular, afirst formof Hamilton’s principle is established. We show
that this variational principle leads to the correct equations of motion for the clas-
sical particle, the Brownian particle in thermodynamical equilibrium, and the quan-
tum particle. In the latter case, the critical processq satisfies a stochastic Newton
law. We then introduce the momentum processp, and show that the pair (q,p)
satisfies canonical-like equations. ©1996 American Institute of Physics.
@S0022-2488~96!03507-4#

I. INTRODUCTION

In a recent paper,1 we established the stochastic mechanics counterpart of the second~hydro-
dynamic! form of Hamilton’s principle. The resulting variational picture is much richer and of a
different nature with respect to the one previously considered in the literature. This paper deals
with the first~particle! form of Hamilton’s principle. Our principle may be viewed as a strength-
ening of Ref. 2~pp. 73–75! which in turn was a modification of Yasue’s original work.3 Further
related work may be found in Ref. 4~Chap. 5!. We adopt kinematical variables and stochastic
derivatives different from Refs. 3 and 2. The critical stochastic process is not Markovian, but
becomes Markovian if we adjoin certain mean-forward and mean-backward velocities. This pic-
ture is consistent with the classical mechanical picture.

For the purpose of later reference and comparison, we outline below one of the main results
of Ref. 1. Assume that the motion of a nonrelativistic, spinless particle can be described by a
stochastic processq5$q(t);t0<t<t1%, taking the values inR

3 and having a stochastic differential
of the form

dq~ t !5b~ t !dt1S \

mD 1/2dw1 , ~1!

where theforward drift b(t) is a measurable function of$q(t);t0<t<t%, w1 is aWiener process
with increments independent at each time of the past ofq satisfyingE$dw1dw1

T %5I 3dt. If the
diffusion has finite kinetic energy

EH E
t0

t1
b~ t !•b~ t !dtJ ,`,

then we also have the reverse-time representation5

a!Electronic mail: pavon@ladseb.pd.cnr.it
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dq~ t !5g~ t !dt1S \

mD 1/2dw2 , ~2!

whereg, called thebackward drift, depends at each time only on the future of the processq and
w2 is another Wiener process whose increments are, at each time, independent of the future of the
processq and satisfyE$dw2dw2

T %5I 3dt. When\ tends to zero, bothb andg tend to the classical
velocity. Hence, thecurrent velocityv(t):5 1

2[b(t)1g(t)] corresponds to the classical velocity,
and theosmotic velocity u(t):5 1

2[b(t)2g(t)] tends to zero in the semiclassical limit. In order to
develop the Lagrangian and Hamiltonian formalism in stochastic mechanics in a way that natu-
rally extends the classical case we are then naturally led1,6 to introduce thecomplex-valuedve-
locity ~quantum velocity! vq(t):5v(t)2 iu(t) that simultaneously capturesv(t) andu(t). From
Eqs.~1! and ~2! we get

dq~ t !5v~ t !dt1
1

2 S \

mD 1/2@dw11dw2#, ~3!

05u~ t !dt1
1

2 S \

mD 1/2@dw12dw2#. ~4!

Multiplying the second equation by2i , and then adding it to the first, we finally get

dq~ t !5@v~ t !2 iu~ t !#dt1dw, ~5!

where

dw5
1

2 S \

mD 1/2@~12 i !dw11~11 i !dw2#.

For the properties of thequantum noise dwsee Ref. 1~Sec. VII!. The differential~5! of q,
differently from Eqs.~1! and ~2!, enjoys thetime reversal invarianceproperty, see Ref. 6.

Consider the situation where the particle is subject to an external conservative force deriving
from the sufficiently regular potentialV(x). Let L(x,y):5 1

2my•y2V(x) be the Lagrangian de-
fined onR33C3, and letV denote the family of finite-energy,C3-valued stochastic processes on
[ t0 ,t1]. For f0 a complex-valued function onR3 such thatc0(x):5exp i /\w0(x) hasL

2 norm 1,
consider the variational problem

extremizevqPV EH E
t0

t1
L~x~ t !,vq~ t !!dt1w0~x~ t0!!J ~6!

subject to the constraint that the finite-energy, possibly non-Markovian diffusionx has quantum
velocity vq and a prescribed probability densityr1 at time t1. We then have the following result
~Ref. 1, Sec. VIII!.

Theorem 1: Suppose that the solution$c(x,t),tP[ t0 ,t1] % of the Schro¨dinger equation

]c

]t
5

i\

2m
Dc2

i

\
V~x!c, ~7!

with initial conditionc(x,t0)5c0(x) never vanishes and satisfies
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EH E
t0

t1
u¹ log c~x~ t !,t !u2dtJ ,`

for each finite-energy diffusion x on[ t0 ,t1]. In Problem (6), letr1(x)5uc(x,t1)u
2. Then, there

exists a stochastic process$x* (t);t0<t<t1%, called the Nelson process, solving together with its
quantum drift1/m¹\/ i log c(x* (t),t) Problem (6).

It is worthwhile to observe that the Markov property of the extremal process is aresultof the
variational principle. Also notice that the probability densityr(x,t) of q(t) satisfies Born’s rela-
tion r(x,t)5uc(x,t)u2. The existence of the Nelson process corresponding to a given solution
c(x,t) of the Schro¨dinger equation is, in the general case wherec(x,t) can vanish, a challenging
question that has generated considerable interest, see, e.g., Refs. 7, 4~Chap IV!, and 8, and
references therein. The existence of the Nelson probability measure is established in Ref. 1 under
the present assumptions by means of the Girsanov transformation theory, cf., e.g., Ref. 9~Chap 6!.
The quantum Hamilton principle just recalled was also shown in Ref. 1 to be a consequence of two
other variational principles of the min–max type. The first one, called thesaddle-point action
principle, contains as special cases both the Guerra–Morato variational principle10 and Schro¨-
dinger original variational derivation of the time-independent equation, see, e.g., Ref. 11~p. 118!.
The second, called thesaddle-point entropy production principle, concerns the production of
configurational entropy. The Nelson process appears then as asaddle-point equilibrium solution
for both stochastic differential games.

In this paper, we develop thefirst (particle) formof Hamilton’s principle in stochastic me-
chanics. We then show that this variational principle can be applied to a variety of conservative
systems such as the classical particle, the Brownian particle in thermodynamical equilibrium, and
the quantum particle by simply changing the family of trial motions.

The paper is outlined as follows. In Sec. II we collect some basic facts about the kinematics
of stochastic processes. In Sec. III, we develop a stochastic calculus of variations. The correspond-
ing Hamilton’s principle is then applied in Sec. IV to various conservative systems. In Sec. V, we
develop some basic elements of the Hamilton–Jacobi theory in stochastic mechanics.

II. BACKGROUND ON THE KINEMATICS OF STOCHASTIC PROCESSES

Let ~V,E ,P! be a complete probability space, and letA:5~At!, tP[ t0 ,t1], be a nondecreas-
ing family of sub s-algebras ofE . Let x:5$x(t);tP[ t0 ,t1] % be anRn-valued, second-order,
A-adapted stochastic process, namely the components ofx(t) areAt-measurable for allt in
[ t0 ,t1]. Suppose thatx is a.s. and mean-square continuous. We say thatx is mean-forward
differentiablewith respect to the filtrationA if the limit

~D1
Ax!~ t !5 lim

h↘0
EH x~ t1h!2x~ t !

h UAtJ
exists fortP[ t0 ,t1), and forms a continuous curve inLn

2~V,E ,P!. In this case, it may be shown
along the lines of Ref. 12~Sec. 11! that x is a continuous semimartingale of the form

x~ t !5x~ t0!1E
t0

t

~D1
Ax!~s!ds1m1

A~ t !, ~8!

where the integral is a Riemann integral inLn
2~V,E ,P! ~Ref. 13 p. 10!, andm1

A is a square-
integrable, continuousAt-martingale withm1

A(t0) 5 0 a.s.~for the definitions, see, e.g., Ref. 14,
p. 78!. Similarly, if B:5~B t!, tP[ t0 ,t1], is a nonincreasing family of subs-algebras ofE to
which x is adapted, we say thatx is mean-backward differentiablewith respect toB if the limit
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~D2
Bx!~ t !5 lim

h↘0
EH x~ t !2x~ t2h!

h UB tJ
exists for tP(t0 ,t1], and forms a continuous curve inLn

2~V,E ,P!. In that case,x admits the
backward semimartingale representation

x~ t !5x~ t1!1E
t1

t

~D2
Bx!~s!ds2m2

B~ t !, ~9!

wherem2
B is a reverse-time, square-integrable, continuous,B t-martingale withm2

B(t1) 5 0 a.s.
Notice thatD1

Ax andD2
Bx depend crucially on the filtrationsA andB. Obviously, forx to be

mean-square differentiable,At must containF t :5s$x(s);t0<s<t% and B t must contain
G t :5s$x(s);t<s<t1%. If x is mean-forward and mean-backward differentiable with respect to
F :5~F t! and G :5~G t!, respectively, we callb(t): 5 (D1

F x)(t) the forward drift of x and
g(t): 5 (D2

G x)(t) thebackward driftof x. Of course, for mean-square differentiable processes, we
haveb(t)5g(t)5 ẋ(t).

For stochastic processes that are simultaneously mean-forward and mean-backward differen-
tiable with respect to the filtrationsA andB, we can introduce two more stochastic derivatives
~using the notation introduced in Ref. 15! by

~DA,Bx!~ t !:5
~D1

Ax!~ t !1~D2
Bx!~ t !

2
,

~dDA,Bx!~ t !:5
~D1

Ax!~ t !2~D2
Bx!~ t !

2
.

In particular, v(t):5(DF ,Gx)(t)5(b(t)1g(t))/2 and u(t):5(dDF ,Gx)(t)5(b(t)2g(t))/2
are thecurrent drift and theosmotic driftof x, respectively. Representations~8! and~9! now give

x~ t !2x~s!5E
s

t

~DA,Bx!~s!ds1
1

2
@m1

A~ t !2m1
A~s!1m2B~ t !2m2

B~s!#, ~10!

05E
s

t

~dDA,Bx!~s!ds1
1

2
@m1

A~ t !2m1
A~s!2m2B~ t !1m2

B~s!#. ~11!

Multiplying Eq. ~11! by 2i , and then adding it to Eq.~10!, we finally get a generalization of Eq.
~5!,

x~ t !2x~s!5E
s

t

~~D2 idD !A,Bx!~s!ds1mA,B~ t !2mA,B~s!, ~12!

where

mA,B~ t !:5 1
2@~12 i !m1

A~ t !1~11 i !m2
B~ t !#.

As for the diffusion processes of Sec. I, we callvq(t):5((D2 idD)F ,Gx)(t) thequantum driftof
x anddmF ,G (t) thequantum noise.

Remark 1: Notice that when((D2 idD)A,Bx)5 f (x(t),t), x is a Markov process. Indeed, it
admits a forward differential given by

dx5@Rf ~x~ t !,t !2Ff ~x~ t !,t !#dt1dm1
A ,
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whereR andF denote real and imaginary part, respectively.
We now state Nelson’s product rule.
Lemma 1: Let x,y:[ t0 ,t1]→Ln

2~V,E ,P! be twoa.s.and mean-square continuous stochastic
processes. Suppose that x and y are simultaneously mean-forward and mean-backward differen-
tiable with respect to the filtrationsA andB, respectively. Suppose, moreover, that the processes
D1
Ax, D2

Bx, D1
Ay, and D2

By have continuous paths. Then

E$x~ t1!•y~ t1!2x~ t0!•y~ t0!%5EH E
t0

t1
@~D1

Ax!~ t !•y~ t !1x~ t !•~D2
By!~ t !#dtJ . ~13!

Exchanging the roles ofx andy in Eq. ~13!, adding and subtracting, we get two more formulas
corresponding to Eqs.~10! and ~11!.

Corollary 1: Let x and y be as in the previous lemma. Then

E$x~ t1!•y~ t1!2x~ t0!•y~ t0!%5EH E
t0

t1
@~DA,Bx!~ t !•y~ t !1x~ t !•~DA,By!~ t !#dtJ , ~14!

05EH E
t0

t1
@~dDA,Bx!~ t !•y~ t !1x~ t !•~dDA,By!~ t !#dtJ . ~15!

Multiplying Eq. ~15! by2i , and then adding it to the first, we finally get a fundamental integration
by parts formula related to representation~12!.

Corollary 2: Let x and y be as in the above lemma. Then

E$x~ t1!•y~ t1!2x~ t0!•y~ t0!%

5EH E
t0

t1
@~~D2 idD !A,Bx!~ t !•y~ t !1x~ t !•~~D1 idD !A,By!(t !]dtJ . ~16!

So far we have dealt withRn-valued stochastic processes. A moment’s thought, however, reveals
that everything we have done holds true if the processes areCn-valued.

We now consider the case where the processx is ann-dimensional, finite-energy Markovian
diffusion with constant diffusion coefficients2I n . We denote byb1(x(t),t) andb2(x(t),t) its
forward and backward drifts, respectively. Moreover, let

v~x~ t !,t !5
b1~x~ t !,t !1b2~x~ t !,t !

2

and

u~x~ t !,t !5
b1~x~ t !,t !2b2~x~ t !,t !

2

denote the current and osmotic drifts. We then have Nelson’s relation

u~x,t !5
s2

2
¹ log r~x,t !, ~17!

where r(x,t) is the sufficiently smooth probability density ofx(t) @set u(x,t) equal to zero
wheneverr(x,t)50#. Moreover, the Fokker–Planck equation governing the evolution ofr

]r

]t
1¹•~b1r!5

s2

2
Dr,
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may be rewritten as acontinuity equationof fluid dynamics

]r

]t
1¹•~vr!50. ~18!

As before, letF t :5s$x(s);t0<s<t% andG t :5s$x(s);t<s<t1%. Also let f (x,t):Rn3[ t0 ,t1]
→R be a function with compact support of classC2,1. From the two changes of variables formulas
~Ito’s rules! corresponding to the forward and backward representations for the increments ofx
@Eqs.~1! and ~2!# we get~Ref. 12, p. 104!

~D1
F f ~x~ t !,t !!5F S ]

]t
1b1•¹1

s2

2
D D f G~x~ t !,t !, ~19!

~D2
G f ~x~ t !,t !!5F S ]

]t
1b2•¹2

s2

2
D D f G~x~ t !,t !. ~20!

The semisum and the semidifference of Eqs.~19! and ~20! give

~DF ,G f ~x~ t !,t !!5F ]

]t
1v~ t !•¹ G f ~x~ t !,t !, ~21!

~dDF ,G f ~x~ t !,t !!5Fu~ t !•¹1
s2

2
DG f ~x~ t !,t !. ~22!

We can now establish a rather interesting formula.
Lemma 2: Let x(t) be a finite-energy Markovian diffusion whose never vanishing probability

densityr is of class C2,1. Then

@D1
F ~D1

F x!#~ t !2@D2
G ~D2

G x!#~ t !52$@DF ,G ~dDF ,Gx!#~ t !1@dDF ,G ~DF ,Gx!#~ t !%50, a.s.
~23!

for all tP[ t0 ,t1].
Proof: From Eq.~18!, we get

] log r

]t
52¹•v2v•¹ log r.

Using Eq.~17!, we get

]u

]t
52

s2

2
Dv2u•¹v2v•¹u. ~24!

In view of Eqs.~21! and ~22!, Eq. ~24! can now be written as

~DF ,Gu!~ t !1~dDF ,Gv !~ t !5@DF ,G ~dDF ,Gx!#~ t !1@dDF ,G ~DF ,Gx!#~ t !50, ~25!

which is Eq.~23!. h

Equation~24! was derived by Nelson in his early work@Ref. 12, Eq.~5! on p. 106#. Curiously,
nobody seems to have noticed the straightforward reformulation of Eq.~24! given by Eqs.~25!
and~23!. The corresponding hydrodynamical equation~Madelung equation! occurs in the context
of the saddle-point entropy production principle, cf. Ref. 1, Sec. V.
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III. STOCHASTIC CALCULUS OF VARIATIONS

Let X (x0 ,x1) denote the family of Rn-valued, mean-square continuous processes
x5$x(t);tP[ t0 ,t1] % such thatx(t0)5x0 a.s.,x(t1)5x1 a.s., and satisfying the following two
properties.

~i! x is mean-forward and mean-backward differentiable with respect to its past and future
filtrationsF 5~F t! andG5~G t!, respectively; we denote byX(t) the augmented process

X~ t !5S x~ t !
b~ t !
g~ t !

D .
~ii ! The processX is a simultaneously mean-forward and mean-backward differentiable with

respect to the filtrations F5~Ft! and G5~Gt!, where Ft :5s$X(s);t0<s<t% and
Gt :5s$X(s);t<s<t1%.

Obviously,F t#Ft andG t#Gt . In order to avoid any confusion, we stress the fact that, in
general, (D1

F x)(t) Þ (D1
F x)(t) 5 b(t) and (D2

Gx)(t) Þ (D2
G x)(t) 5 g(t). Consequently, (DF,Gx)

3(t) Þ v(t) and (dDF,Gx)(t) Þ u(t). Also notice thatX (x0 ,x1) contains as a proper subset the
family of finite-energy,Markoviandiffusions with the prescribed end-point marginals.

For eachxPX (x0 ,x1), we define the family ofvariations y of x to be the setY (x) of
Rn-valued, mean-square continuous processesy5$y(t);tP[ t0 ,t1] % satisfying the two properties:
~i! y(t0)5y(t1)50 a.s.;~ii ! y is simultaneously mean-forward and mean-backward differentiable
with respect to the filtrationsF andG, respectively.

Remark 2: Let f:Rn3@t0,t1#→Rn, having compact support inRn3(t0 ,t1), be of class C2,1.
Then, y(t):5 f (x(t),t) belongs toY (x). These are precisely the variations considered by Nelson
in Ref. 3.

Let L:Rn3Cn3Cn3[ t0 ,t1]→Cn be a sufficiently regular function. Namely,L(x,z1 ,z2 ,t) is
continuously differentiable with respect tox and t, entirely as a function ofz1 and entirely as a
function of z2. DefineI :X (x0 ,x1)→C by

I ~x!5EH E
t0

t1
L~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !dtJ .

Notice that in this action integral appear the conditional derivatives relative to the pair of filtra-
tions ~F,G! rather than with respect to~F ,G !. Also notice that our choice of kinematical variables
differs from those previously considered in the literature@Refs. 3, 2~pp. 73–75!, and 4~Chap. 5!.
Let domI denote the subset ofx in X (x0 ,x1) such thatI (x),`.

Definition 1: The process xPdomI is critical for I if for all processes yPY (x) we have

I ~x1y!2I ~x!5o~ iyi !,

where

iyi2:5EH E
t0

t1
@y~ t !•y~ t !1~DF,Gy!~ t !•~DF,Gy!~ t !1~dDF,Gy!~ t !•~dDF,Gy!~ t !#dtJ .

We are now ready for the fundamental theorem of stochastic calculus of variations.
Theorem 2: The stochastic process xPdomI is critical for I if and only if it satisfies the

Euler–Lagrange equations

3381Michele Pavon: Lagrangian dynamics for quantum particles

J. Math. Phys., Vol. 37, No. 7, July 1996

Downloaded 09 Feb 2012 to 147.162.114.150. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



F ~D1 idD !F,G
]L

]z1
1~D2 idD !F,G

]L

]z2
2

]L

]xG50 a.s. ~26!

for almost all tP[ t0 ,t1].
Proof: Let xPdomI be critical for I , and let yPY (x) be a variation ofx. By Taylor’s

formula

I ~x1y!2I ~x!5o~ iyi !1EH E
t0

t1F ]L

]x
•y1

]L

]z1
•~~D2 idD !F,Gy!1

]L

]z2
•~~D1 idD !F,Gy!GdtJ .

Applying Eq. ~16!, and taking into account the fact thaty vanishes at the end points, we get

I ~x1y!2I ~x!5o~ iyi !1EH E
t0

t1F ]L

]x
2~D1 idD !F,GS ]L

]z1
D 2~D2 idD !F,GS ]L

]z2
D G•ydtJ .

~27!

Since the expectation in Eq.~27! must vanish for allyPY (x), it follows that both the real and the
imaginary parts of

F]L]x2~D1 idD !F,GS ]L

]z1
D2~D2 idD !F,GS ]L

]z2
D G

must vanish. Conversely, if Eq.~26! holds,x is critical because of Eq.~27!. h

Corollary 3: Let L(x,z1 ,z2 ,t):5
1
2mz1•z22V(x), where V is of class C1. Then xPdomI is

critical for I if and only if the stochastic Newton law

m@~~DF,GDF,G2dDF,GdDF,G!x!~ t !#52¹V~x~ t !! a.s. ~28!

for all tP[ t0 ,t1].
Proof: Notice that in this case

]L

]z1
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5

m

2
~~D1 idD !F,Gx!~ t !,

]L

]z2
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5

m

2
~~D2 idD !F,Gx!~ t !.

From Eq.~26!, we get thatx is critical for I if and only if

m

2
@~~D1 idD !F,G~D1 idD !F,G1~D2 idD !F,G~D2 idD !F,G!x!] ~ t !52¹V~x~ t !!, a.s.

~29!

and Eq.~28! follows. h

Remark 3: Notice that Eqs. (28) and (29) can also be written in the form

m

2
@~~D1

FD2
G1D2

GD1
F !x!~ t !#52¹V~x~ t !!. ~30!

The comparison between the left-hand sides of Eqs. (29) and (30) gives the long sought probabi-
listic meaning for the Nelson stochastic acceleration, cf. Ref. 2, Problem 6, p. 133. Nelson’s
acceleration may also be viewed as the real part of((D 2 idD)F,G(D 2 idD)F,G)x) which occurs
in the global Newton’s law (40) below.
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IV. HAMILTON’S PRINCIPLE

We now require that the conservative motion of a particle of massm be critical for the action
I introduced in Sec. III.

A. Classical particle

Consider a classical particle subject to an external conservative force induced by the potential
functionV. As trajectories we take deterministic,C2 functions. Hence,F t5Ft5G t5Gt5$V,B%,
namely the trivial s field. In particular, x0 and x1 are two points in R3. Moreover,
~DF,Gx!(t)5 ẋ(t), ~dDF,Gx!(t)50, and~DF,Gẋ!(t)5 ẍ(t). Thus, Corollary 2 gives thatx is critical
for I if and only if Newton’s law

mẍ~ t !52¹V~x~ t !! ~31!

is satisfied for alltP[ t0 ,t1].

B. Classical particle with uncertain end points

Suppose we have a classical~C2 trajectories! particle with uncertain initial and terminal
positions. This uncertainty is described through initial and final probability densitiesr0 and r1,
respectively. Letx0 and x1 be distributed according tor0 and r1, respectively. Then, for all
admissible motionsx we haveF t5Ft5s~x0! andG t5Gt5s~x1!. As before,D

F,Gx(t)5 ẋ(t), and
dDF,Gx(t)50. Thus, by Corollary 2, the stochastic processx satisfyingx(t0)5x0 a.s.,x(t1)5x1
a.s. withC2 paths is critical forI if and only if Eq. ~31! holds for all times with probability one.

C. Brownian particle

Consider a Brownian particle in thermodynamical equilibrium. We assume that its motion
may be described by a stochastic processx with differentiable sample paths and that forms a
diffusion with constant diffusion coefficient together with its derivativeẋ. Hence, we have
ẋ(t)5b(t)5g(t)5DF,Gx, and dDF,Gx50. Moreover, Ft5s$x(s),ẋ(s);t0<s<t% and
Gt5s$x(s),ẋ(s);t<s<t1%. By Corollary 2,x is critical for I if and only if

m~DF,Gẋ!~ t !52¹V~x~ t !! a.s. ~32!

for all tP[ t0 ,t1]. It follows, in particular, that the critical processx is such that (x,ẋ) is Markov-
ian ~see Remark 1!.

Theorem 3: The stochastic process x in the above described class is critical for I if and only
if the forward drift of ẋis given by

~DFẋ!~ t !52l ẋ~ t !2
1

m
¹V~x~ t !!, a.s., ~33!

wherel5s2m/(2kT) ands2 is the diffusion coefficient of x˙ .
Proof: By the Gibbsian postulate, the equilibrium distribution is the Maxwell–Boltzmann

distribution

r~x.ẋ!5c expH 2 1
2 mẋ• ẋ2V~x!

kT
J . ~34!

Moreover, since
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S x~ t !
ẋ~ t ! D

is Markovian, Nelson’s relation~17! between the forward and the backward drift ofẋ yields

~DF,Gẋ!~ t !5~D1
F ẋ!~ t !2

s2

2
¹ ẋ log r~x~ t !,ẋ~ t !!. ~35!

Equations~34! and ~35! now give

~DF,Gẋ!~ t !5~D1
F ẋ!~ t !1s2

m

2kT
ẋ~ t !. ~36!

If x is critical, then Eqs.~32! and~36! give Eq.~33!. Conversely, if the processx has forward drift
of ẋ given by Eq.~33!, and has the invariant density~34!, then it satisfies the Newton law~32!, see
Refs. 1~p. 102! and 16. h

Remark 4: It follows, in particular, that the Markovianess of(x,ẋ), the form of the forward
drift of ẋ in the Ornstein–Uhlenbeck model of physical Brownian motion (Ref. 12, Chaps. 9 and
10), and its relation to the diffusion coefficient~Einstein’s fluctuation–dissipation relation! are
consequences of the Gibbsian postulate and of the Newton law (34). Conversely, given that the
forward drift of ẋ lies in a certain class, necessary and sufficient conditions can be given for the
particle to obey the Maxwell–Boltzmann distribution in equilibrium, see Ref. 17, Sec. III.

D. Quantum particle

Consider a nonrelativistic, spinless quantum mechanical particle moving in a force field. As
class of motions we take the subclass ofX (x0 ,x1) of the finite-energy diffusions with constant
diffusion coefficients25\/m. In this case, the action is given by

I ~x!5E
t0

t1F12 m~~D2 idD !F,Gx!~ t !•~~D1 idD !F,Gx!~ t !2V~x~ t !!Gdt. ~37!

Thenx satisfies Hamilton’s principle if and only if it satisfies the stochastic Newton law~28! or,
equivalently, Eq.~29! which may be rewritten as follows

mR@~~D2 idD !F,G~D2 idD !F,G!x!] ~ t !52¹V~x~ t !!, a.s. ~38!

Next we postulate

@~DF,GdDF,G1dDF,GDF,G!x#~ t ![0. ~39!

Putting together Eqs.~39! with ~38!, we get

m@~~D2 idD !F,G~D2 idD !F,G!x!] ~ t !52¹V~x~ t !!, a.s. ~40!

Assumption~39! simply means that the acceleration in the left-hand side of Eq.~40! must be real.
Also notice that Eq.~39! is precisely Eq.~23! for the position processx. Finally notice that the
extremizing processx is such that the augmented process

S x~ t !
~~D2 idD !F,Gx!~ t ! D ~41!

is Markovian. To see this, recall Remark 1 and observe that
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S ~D2 idD !F,GS x~ t !
~~D2 idD !F,Gx! D D ~ t !5S ~~D2 idD !F,Gx!~ t !

2
1

m
¹V~x~ t !! D .

The processx by itself, however, is in generalnon Markovian.
We are now ready to introduce themomentum processcorresponding to such a process by

p~ t !:5
]L

]z2
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5m~~D2 idD !F,Gx!~ t !,

p̄~ t !:5
]L

]z1
~x~ t !,~~D2 idD !F,Gx!~ t !,~~D1 idD !F,Gx!~ t !,t !5m~~D1 idD !F,Gx!~ t !.

Then Eq.~40! reads

~~D2 idD !F,Gp!~ t !52¹V~x~ t !!,a.s. ~42!

or equivalently

~~D1 idD !F,Gp̄!~ t !52¹V~x~ t !!,a.s. ~43!

Let H(x,y):5(1/2m)y•y1V(x) be theHamiltonian functiondefined onR33C3, and writeq(t)
instead ofx(t) for the position of the quantum particle. We then get thecanonical-like equations

~~D2 idD !F,Gq!~ t !5¹y~q~ t !,p~ t !!, ~44!

~~D2 idD !F,Gp!~ t !52¹x~q~ t !,p~ t !!, ~45!

or equivalently

~~D1 idD !F,Gq!~ t !5¹yH~q~ t !,p̄~ t !!, ~46!

~~D1 idD !F,Gp̄!~ t !52¹xH~q~ t !,p̄~ t !!. ~47!

The closest in spirit previous attempt to define the momentum process within stochastic mechanics
is Ref. 18. See Ref. 2, pp. 95–98 and Ref. 4, pp. 117–119# for further work and discussion on this
topic.

We close the section with a comment. In Ref. 19~p. 110!, Bohm and Hiley write concerning
Nelson’s stochastic acceleration: ‘‘If it could be made clear that this definition is physically or
kinematically plausible then Nelson’s approach would evidently have an important advantage.’’
As observed in Remark 3, the Nelson acceleration may be viewed as the real part of the second-
order stochastic derivative~(D2 idD)F,G(D2 idD)F,G!x! which occurs in Eq.~40!.

In Sec. V, we show that indeed the Nelson process associated with a particular solution of the
Schrödinger equation satisfies the global Newton’s law~40!. Hence, we feel that the results of this
paper, together with Refs. 12, 15, 2, 1, 6, clearly demonstrate the physical and kinematical
plausibility of Nelson’s acceleration.

V. ELEMENTS OF HAMILTON–JACOBI THEORY

Following Ref. 6, we now develop the basic elements of a Hamilton–Jacobi theory of sto-
chastic mechanics~see Ref. 15, Sec. 1 for a beautiful account of the classical theory!. Suppose
$c(x,t);t0<t<t1% is a never vanishing solution of theSchrödinger equation
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]c

]t
5

i\

2m
¹c2

i

\
V~x!c.

ThenSq(x,t):5\/ i log c~x,t! satisfies

]Sq
]t

1
1

2m
¹Sq•¹Sq1V~x!2

i\

2m
DSq50. ~48!

This is theHamilton–Jacobi equationof stochastic mechanics. Indeed, we can now rephrase
Theorem 1 as follows. Suppose$Sq(x,t);t0<t<t1% solves Eq.~48! with the initial condition
Sq(x,t0)5f0(x), and satisfies

EH E
t0

t1
u¹Sq~x~ t !,t !u2dtJ ,`

for all finite-energy diffusionsx on [t0 ,t1]. Let r1(x)5uexp~i/\!Sq~x,t1!u
2. Then, there is a sto-

chastic process$q(t);t0<t<t1%, called the Nelson process, solving together with its quantum drift
(1/m)¹Sq(q(t),t) Problem~6!. Corresponding to such anSq , we define themomentum fieldby
p(x,t)5¹Sq(x,t), and the momentum process byp(t):5p(q(t),t)5¹Sq(q(t),t). In Ref. 6 it
was shown that the processp(t) has the same first and second moments as the quantum momen-
tum operator. It was also shown that the uncertainty relations admit a simple stochastic interpre-
tation in terms of the pair (q(t),p(t)).

Theorem 4: The pair (q(t),p(t)) satisfies the stochastic Hamilton equations (44) and (45).
Proof: Let us first notice that (D1

F q)(t) 5 (D1
F q)(t) 5 b1(q(t),t). Indeed, sinceq(t) is Mar-

kovian, so is

X~ t !5S q~ t !
b1~q~ t !,t !
b2~q~ t !,t !

D .
We then have

~D1
F q!~ t !5 lim

h↘0
EH q~ t1h!2q~ t !

h UFtJ
5 lim

h↘0
EH q~ t1h!2q~ t !

h US q~ t !
b1~q~ t !,t !
b2~q~ t !,t !

D J
5 lim

h↘0
EH q~ t1h!2q~ t !

h Uq~ t !J
5~D1

F q!~ t !5b1~q~ t !,t !.

Similarly, we get (D2
Gq)(t)5(D2

Cq)(t)5b2(q(t),t). Hence, (DF,Gq)(t)5(DF ,Gq)(t)
5v(q(t),t) and (dDF,Gq)(t)5(dDF ,Gq)(t)5u(q(t),t). We then have ((D2 idD)F,G!q)(t)
5 ((D2 idD)F ,G !q)(t) 5 v(q(t),t) 2 iu(q(t),t)5 vq(q(t),t)5 (1/m)¹Sq(q(t),t)5 ¹yH(q(t),
p(q(t),t))5¹yH(q(t),p(t)). To prove Eq.~45!, recall from Ref. 1, Sec. VII that iff(x,t) is a
complex-valued function with sufficiently regular real and imaginary parts, then

d@f~q~ t !,t !#5F ]

]t
1vq~q~ t !,t !•¹2

i\

2m
D Gf~q~ t !,t !dt1¹f~q~ t !,t !•dw, ~49!

wheredw5dq2vq(q(t),t)dt is the quantum noise corresponding toq. Applying Eq. ~49! to
p(q(t),t)5¹Sq(q(t),t), we get
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d@p~q~ t !,t !#5F ]

]t
1vq~q~ t !,t !•¹2

i\

2m
¹ G¹Sq~q~ t !,t !dt1D~q~ t !,t !dw, ~50!

where the 333 matrixD hasi j th entrydi j (q(t),t)5(]2/]xi]xj )Sq(q(t),t). Replacingvq(q(t),t)
in Eq. ~50! with (1/m)¹Sq(q(t),t), and then employing Eq.~48!, we get

d@p~q~ t !,t !#52¹V~q~ t !!dt1D~q~ t !,t !dw. ~51!

Hence, the quantum drift ofp(t) is 2¹V(q(t)) and Eq.~45! holds. h

By the same procedure, we can handle more general~sufficiently regular! Hamiltonian func-
tionsH(x,y,t) if Sq(x,t) now satisfies

]Sq
]t

1H~x,¹Sq ,t !2
i\

2m
DSq50,

and if we can construct a Markov processq with quantum drift

vq~q~ t !,y!5¹yH~q~ t !,¹Sq~q~ t !,t !,t !,

and prescribed initial condition.
We now isolate a crucial step in the proof of Theorem 4. In view of Eq.~49!, define the

quantum acceleration fieldby the substantial derivative

aq~x,t !:5F ]

]t
1vq~x,t !•¹2

i\

2m
D Gvq~x,t !, ~52!

wherevq(x,t)5(1/m)¹Sq(x,t). Using Eq.~48! in Eq. ~52!, we finally get

aq~x,t !52
1

m
¹V~x!. ~53!

Equation~53! is the local form counterpart of Eq.~40!.
Remark 5: Let$c(x,t);t0<t<t1% be a never vanishing solution of the Schro¨dinger equation

satisfying Carlen’s finite-energy condition (Ref. 7). Then the corresponding Nelson process satis-
fies Eq. (40) with end points distributed according tor0(x)5uc(x,t0)u

2 and r1(x)5uc(x,t1)u
2.

VI. DISCUSSION

In this paper, we have developed a particle form of Hamilton’s principle. We have then
applied the principle to various conservative systems only changing the class of admissible mo-
tions. In the case of a quantum particle, we have seen that the critical processx satisfies the
stochastic Newton law~40!. This process is not Markovian, but the corresponding augmented
process~41! is Markovian.

In Ref. 1, see also the outline in Sec. I, we have developed the second, hydrodynamic version
of Hamilton’s principle in the context of stochastic mechanics. The critical processq is there
Markovian. Indeed, it is the Nelson process. Introducing the momentum field, and then the mo-
mentum processp as in Sec. V, we have obtained a pair of stochastic processes satisfying the
stochastic Hamilton equations~44! and ~45!.

If we agree that in a deterministic context Markovian means ‘‘satisfies a first-order differential
equation,’’ we see that the similarity with classical mechanics is striking. Much remains to be
done, however, to develop a satisfactory Lagrangian and Hamiltonian formalism in stochastic
mechanics even in the simplest case considered in this paper.
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