BARBARIOL, TOMMASO

BARBARIOL, TOMMASO  

Università di Padova  

Mostra records
Risultati 1 - 15 di 15 (tempo di esecuzione: 0.036 secondi).
Titolo Data di pubblicazione Autori Rivista Serie Titolo libro
Active Learning-based Isolation Forest (ALIF): Enhancing anomaly detection with expert feedback 2024 Marcelli E.Barbariol T.Sartor D.Susto G. A. INFORMATION SCIENCES - -
Bayesian active learning isolation forest (B-ALIF): A weakly supervised strategy for anomaly detection 2024 Sartor, DavideBarbariol, TommasoSusto, Gian Antonio ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE - -
Time Series Forecasting to Detect Anomalous Behavior in Multiphase Flow Meters 2024 T. BarbariolM. FananG. A. SustoE. Feltresi + - - Proceedings of the 8th IEEE International Forum on Research and Technology for Society and Industry (RTSI 2024)
Classifying Circumnutation in Pea Plants via Supervised Machine Learning 2023 Wang, QiuranBarbariol, TommasoSusto, Gian AntonioBonato, BiancaGuerra, SilviaCastiello, Umberto PLANTS - -
Classifying Circumnutation in Pea Plants via Supervised Machine Learning 2023 Qiuran WangTommaso BarbariolGian Antonio SustoBianca BonatoSilvia GuerraUmberto Castiello - - Classifying Circumnutation in Pea Plants via Supervised Machine Learning
Improving Anomaly Detection for Industrial Applications 2023 BARBARIOL, TOMMASO - - -
A Revised Isolation Forest procedure for Anomaly Detection with High Number of Data Points 2022 Marcelli, ElisaBarbariol, TommasoBeghi, AlessandroSusto, Gian Antonio + - - Proceedings of the 2022 IEEE 23rd Latin American Test Symposium (LATS)
TiWS-iForest: Isolation forest in weakly supervised and tiny ML scenarios 2022 Barbariol T.Susto G. A. INFORMATION SCIENCES - -
A Review of Tree-Based Approaches for Anomaly Detection 2021 Barbariol T.Marcato D.Susto G. A. + - SPRINGER SERIES IN RELIABILITY ENGINEERING Springer Series in Reliability Engineering
Uncertainty estimation for machine learning models in multiphase flow applications 2021 Frau L.Susto G. A.Barbariol T.Feltresi E. INFORMATICS - -
A Machine Learning-Based System for Self-Diagnosis Multiphase Flow Meters 2020 Barbariol, TommasoFeltresi, EnricoSusto, Gian Antonio - - International Petroleum Technology Conference
Self-Diagnosis of Multiphase Flow Meters through Machine Learning-Based Anomaly Detection 2020 Tommaso BarbariolEnrico FeltresiGian Antonio Susto ENERGIES - -
Sensor fusion and machine learning techniques to improve water cut measurements accuracy in multiphase application 2020 Barbariol T.Feltresi E.Susto G. A.Tescaro D.Galvanin S. - - Proceedings - SPE Annual Technical Conference and Exhibition
Machine Learning approaches for Anomaly Detection in Multiphase Flow Meters 2019 Barbariol T.Feltresi E.Susto G. A. - IFAC-PAPERSONLINE IFAC-PapersOnLine
Validity and consistency of MPFM data through a Machine Learning based system 2019 Tommaso BarbariolEnrico FeltresiGian Antonio Susto - - Proceedings of the 2019 North Sea Flow Measurement Workshop