BERGAMIN, LUCA

BERGAMIN, LUCA  

Dipartimento di Matematica "Tullio Levi-Civita" - DM  

Mostra records
Risultati 1 - 10 di 10 (tempo di esecuzione: 0.027 secondi).
Titolo Data di pubblicazione Autori Rivista Serie Titolo libro
(Sometimes) Less is More: Mitigating the Complexity of Rule-based Representation for Interpretable Classification 2025 Bergamin, LucaConfalonieri, RobertoAiolli, Fabio - - (Sometimes) Less is More: Mitigating the Complexity of Rule-based Representation for Interpretable Classification
An investigation into creating counterfactual examples for non-linear Support Vector Machines 2025 Bergamin, LucaAiolli, Fabio NEUROCOMPUTING - -
Improving rule-based classifiers by Bayes point aggregation 2025 Bergamin, LucaAiolli, Fabio + NEUROCOMPUTING - -
Integrating Background Knowledge in Medical Semantic Segmentation with Logic Tensor Networks 2025 Bergamin, LucaAiolli, Fabio + - - Integrating Background Knowledge in Medical Semantic Segmentation Models with Logic Tensor Network
Integrating L0 regularization into Multi-layer Logical Perceptron for Interpretable Classification 2025 Bergamin L.Aiolli F.Confalonieri R. + - CEUR WORKSHOP PROCEEDINGS CEUR Workshop Proceedings
RadiomiX for Radiomics Analysis: Automated Approaches to Overcome Challenges in Replicability 2025 Bergamin, LucaAiolli, FabioPasello, Giulia + DIAGNOSTICS - -
Addressing Challenges in Image Translation for Contrast-Enhanced Mammography using Generative Advesarial Networks 2024 Bergamin L.Aiolli F. + - CEUR WORKSHOP PROCEEDINGS CEUR Workshop Proceedings
Bayes Point Rule Set Learning 2022 Aiolli, FabioBergamin, LucaCarraro, Tommaso + - - Bayes Point Rule Set Learning
Conditioned Variational Autoencoder for Top-N Item Recommendation 2022 Carraro, TBergamin, LAiolli, F + - LECTURE NOTES IN COMPUTER SCIENCE Conditioned Variational Autoencoder for Top-N Item Recommendation
Novel Applications for VAE-based Anomaly Detection Systems 2022 Bergamin, LCarraro, TAiolli, F + - PROCEEDINGS OF ... INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS Novel Applications for VAE-based Anomaly Detection Systems