Formation control allows agents to maintain geometric patterns using local information, but most existing methods assume ideal communication. This paper introduces a goal-oriented framework combining control, cooperative positioning, and communication scheduling for first-order formation tracking. Each agent estimates its position using 6G network-based triangulation, and the scheduling of information updates is governed by Age of Information (AoI) and Value of Information (VoI) metrics. We design three lightweight, signaling-free scheduling policies and assess their impact on formation quality. Simulation results demonstrate the effectiveness of the proposed approach in maintaining accurate formations with no additional communication overhead, showing that worst-case formation adherence increases by 20%.
VoI-aware Scheduling Schemes for Multi-Agent Formation Control
Chiariotti, Federico;Fabris, Marco
2025
Abstract
Formation control allows agents to maintain geometric patterns using local information, but most existing methods assume ideal communication. This paper introduces a goal-oriented framework combining control, cooperative positioning, and communication scheduling for first-order formation tracking. Each agent estimates its position using 6G network-based triangulation, and the scheduling of information updates is governed by Age of Information (AoI) and Value of Information (VoI) metrics. We design three lightweight, signaling-free scheduling policies and assess their impact on formation quality. Simulation results demonstrate the effectiveness of the proposed approach in maintaining accurate formations with no additional communication overhead, showing that worst-case formation adherence increases by 20%.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




