This work reports a comprehensive study on the morphology, composition, and electronic structure of CoAl layered double hydroxide (CoAl-LDH) during the oxygen evolution reaction (OER). To capture electrochemically induced transformations, operando spectroscopic and microscopic methods are combined. The complementary data provided by operando near-edge X-ray absorption fine structure (NEXAFS), supported by density functional theory (DFT) calculations, and electrochemical atomic force microscopy (AFM), reveal that under OER conditions, CoAl-LDH is fragmented into smaller particles due to Al leaching. This process forms a "resting" phase with an average Co oxidation state of 2.5+, which readily transforms into the OER-active beta-CoOOH phase upon further potential increase. This work exemplifies how operando methods enable precise tracking of oxidation state changes, element dissolution, and structural transformations at the nanoscale while the electrocatalyst is active. This approach contrasts with conventional pre- and post-mortem characterization, which would instead suggest Co3O4 formation. These findings extend beyond the specific example of CoAl-LDH, emphasizing the crucial importance of selective cation leaching, recrystallization, and morphological restructuring, since these processes play a key role not only in designing advanced multi-element materials but also in understanding the complex nanoscale mechanisms that govern the activation and durability of practical electrocatalysts.

Operando Exploration of CoAl-LDH: Transformations Driving Alkaline Oxygen Evolution Reaction

Cattelan, M
;
Cielo, L;Carlotto, S;Nalesso, M;Agnoli, S
2025

Abstract

This work reports a comprehensive study on the morphology, composition, and electronic structure of CoAl layered double hydroxide (CoAl-LDH) during the oxygen evolution reaction (OER). To capture electrochemically induced transformations, operando spectroscopic and microscopic methods are combined. The complementary data provided by operando near-edge X-ray absorption fine structure (NEXAFS), supported by density functional theory (DFT) calculations, and electrochemical atomic force microscopy (AFM), reveal that under OER conditions, CoAl-LDH is fragmented into smaller particles due to Al leaching. This process forms a "resting" phase with an average Co oxidation state of 2.5+, which readily transforms into the OER-active beta-CoOOH phase upon further potential increase. This work exemplifies how operando methods enable precise tracking of oxidation state changes, element dissolution, and structural transformations at the nanoscale while the electrocatalyst is active. This approach contrasts with conventional pre- and post-mortem characterization, which would instead suggest Co3O4 formation. These findings extend beyond the specific example of CoAl-LDH, emphasizing the crucial importance of selective cation leaching, recrystallization, and morphological restructuring, since these processes play a key role not only in designing advanced multi-element materials but also in understanding the complex nanoscale mechanisms that govern the activation and durability of practical electrocatalysts.
2025
File in questo prodotto:
File Dimensione Formato  
Small - 2025 - Cattelan - Operando Exploration of CoAl‐LDH Transformations Driving Alkaline Oxygen Evolution Reaction.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3567920
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact