The marked power spectrum — a two-point correlation function of a weighted density field — has emerged as a promising tool for extracting cosmological information from the large-scale structure of the Universe. In this work, we present the first comprehensive analytical study of the marked power spectrum's sensitivity to primordial non-Gaussianity (PNG) of the non-local type. We extend previous effective field theory frameworks to incorporate PNG, developing a complete theoretical model that we validate against the Quijote simulation suite. Through a systematic Fisher analysis, we compare the constraining power of the marked power spectrum against traditional approaches combining the power spectrum and bispectrum (P+B). We explore different choices of mark parameters to evaluate their impact on parameter constraints, particularly focusing on equilateral and orthogonal PNG as well as neutrino masses. Our analysis shows that while marking up underdense regions yields optimal constraints in the low shot-noise regime, the marked power spectrum's performance for discrete tracers with BOSS-like number densities does not surpass that of P+B analysis at mildly non-linear scales (k < 0.25 h/Mpc). However, the marked approach offers several practical advantages, including simpler estimation procedures and potentially more manageable systematic effects. Our theoretical framework reveals how the marked power spectrum incorporates higher-order correlation information through terms resembling tree-level bispectra and power spectrum convolutions. This work establishes a robust foundation for applying marked statistics to future large-volume surveys.

The constraining power of the marked power spectrum: an analytical study

Marinucci, Marco
;
Jung, Gabriel;Liguori, Michele;Ravenni, Andrea;Spezzati, Francesco;Karagiannis, Dionysios;
2025

Abstract

The marked power spectrum — a two-point correlation function of a weighted density field — has emerged as a promising tool for extracting cosmological information from the large-scale structure of the Universe. In this work, we present the first comprehensive analytical study of the marked power spectrum's sensitivity to primordial non-Gaussianity (PNG) of the non-local type. We extend previous effective field theory frameworks to incorporate PNG, developing a complete theoretical model that we validate against the Quijote simulation suite. Through a systematic Fisher analysis, we compare the constraining power of the marked power spectrum against traditional approaches combining the power spectrum and bispectrum (P+B). We explore different choices of mark parameters to evaluate their impact on parameter constraints, particularly focusing on equilateral and orthogonal PNG as well as neutrino masses. Our analysis shows that while marking up underdense regions yields optimal constraints in the low shot-noise regime, the marked power spectrum's performance for discrete tracers with BOSS-like number densities does not surpass that of P+B analysis at mildly non-linear scales (k < 0.25 h/Mpc). However, the marked approach offers several practical advantages, including simpler estimation procedures and potentially more manageable systematic effects. Our theoretical framework reveals how the marked power spectrum incorporates higher-order correlation information through terms resembling tree-level bispectra and power spectrum convolutions. This work establishes a robust foundation for applying marked statistics to future large-volume surveys.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3567642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact