We study the beyond-mean-field Josephson dynamics of the relative phase between two coupled macroscopic quantum systems. Using a covariant background field method, we derive the one-loop only-phase quantum effective action and the corresponding equation of motion for the quantum average of the phase. These analytical results are benchmarked against the exact quantum dynamics of the two-site Bose-Hubbard model, demonstrating a relevant improvement over the standard mean-field predictions across a wide range of interaction strengths.
Quantum Action of the Josephson Dynamics
Vianello, Cesare
;Salasnich, Luca
2025
Abstract
We study the beyond-mean-field Josephson dynamics of the relative phase between two coupled macroscopic quantum systems. Using a covariant background field method, we derive the one-loop only-phase quantum effective action and the corresponding equation of motion for the quantum average of the phase. These analytical results are benchmarked against the exact quantum dynamics of the two-site Bose-Hubbard model, demonstrating a relevant improvement over the standard mean-field predictions across a wide range of interaction strengths.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




