We obtain, using semianalytical transfer operator techniques, the Edwards thermodynamics of a one-dimensional model of blocks connected by harmonic springs and subjected to dry friction. The theory is able to reproduce the linear divergence of the correlation length as a function of energy density observed in direct numerical simulations of the model under tapping dynamics. We further characterize analytically this divergence using a Gaussian approximation for the distribution of mechanically stable configurations, and show that it is related to the existence of a peculiar infinite temperature critical point.
Edwards thermodynamics for a driven athermal system with dry friction
Gradenigo G;
2015
Abstract
We obtain, using semianalytical transfer operator techniques, the Edwards thermodynamics of a one-dimensional model of blocks connected by harmonic springs and subjected to dry friction. The theory is able to reproduce the linear divergence of the correlation length as a function of energy density observed in direct numerical simulations of the model under tapping dynamics. We further characterize analytically this divergence using a Gaussian approximation for the distribution of mechanically stable configurations, and show that it is related to the existence of a peculiar infinite temperature critical point.File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




