Ocean acidification (OA) represents a major threat to marine ecosystems, causing detrimental effects mainly on calcifying organisms. However, the limpet Patella caerulea is one of the few calcifiers that can inhabit the naturally acidified areas of the Castello Aragonese vent systems (Ischia Island, Italy). Its presence suggests that this species may have developed tolerance or adaptive strategies to cope with OA. Nevertheless, the specific biological mechanisms remain largely unknown. To address this gap of knowledge, in our study we conducted physiological and metabolomics analyses on resident limpet populations collected along the acidification gradient of the Castello vent systems. Additionally, we investigated the same mechanisms in specimens transplanted for 30 days from ambient pH conditions to the different pH sites of the vent. Only during summer, OA increased respiration rates in limpets from the most acidified site and, simultaneously, reduced excretion rates and likely protein catabolism, probably to preserve more energy resources while coping with this environmental stress. Furthermore, the individuals up-regulated carnitine metabolism, potentially enhancing energy production through β-oxidation, and several metabolites involved in osmoregulation, oxidative stress, and nucleic acid mechanisms. Similar results were obtained also in limpets transplanted to low pH sites. Overall, our results suggest that limpets exposed to acidified conditions may have developed tolerance strategies to maintain energetic reserves and allocate them among metabolic processes, which are fundamental in maintaining biological and ecological traits and distribution when facing environmental disturbance such as OA.
Physiological and metabolic plasticity in Patella caerulea enables survival in the CO2 vent systems of the Castello Aragonese (Ischia Island)
Munari, MarcoMembro del Collaboration Group
;Matozzo, ValerioMembro del Collaboration Group
;D'Aniello, IlariaMembro del Collaboration Group
;
2025
Abstract
Ocean acidification (OA) represents a major threat to marine ecosystems, causing detrimental effects mainly on calcifying organisms. However, the limpet Patella caerulea is one of the few calcifiers that can inhabit the naturally acidified areas of the Castello Aragonese vent systems (Ischia Island, Italy). Its presence suggests that this species may have developed tolerance or adaptive strategies to cope with OA. Nevertheless, the specific biological mechanisms remain largely unknown. To address this gap of knowledge, in our study we conducted physiological and metabolomics analyses on resident limpet populations collected along the acidification gradient of the Castello vent systems. Additionally, we investigated the same mechanisms in specimens transplanted for 30 days from ambient pH conditions to the different pH sites of the vent. Only during summer, OA increased respiration rates in limpets from the most acidified site and, simultaneously, reduced excretion rates and likely protein catabolism, probably to preserve more energy resources while coping with this environmental stress. Furthermore, the individuals up-regulated carnitine metabolism, potentially enhancing energy production through β-oxidation, and several metabolites involved in osmoregulation, oxidative stress, and nucleic acid mechanisms. Similar results were obtained also in limpets transplanted to low pH sites. Overall, our results suggest that limpets exposed to acidified conditions may have developed tolerance strategies to maintain energetic reserves and allocate them among metabolic processes, which are fundamental in maintaining biological and ecological traits and distribution when facing environmental disturbance such as OA.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




