Ladle slag (LF slag) is a by-product of secondary steelmaking that presents unique valorization challenges compared to BOF or EAF slags due to its distinctive chemical composition (high Al2O3 and CaO content) and uncontrolled hydraulic activity. While other steelmaking slags can be reused as supplementary cementitious materials or aggregates, LF slag is predominantly landfilled, with over 2 million tons discarded annually in Europe alone. This study introduces a novel pyrometallurgical valorization strategy that, unlike conventional approaches focused solely on mineral recovery, simultaneously recovers both metallic and mineral value through aluminothermic reduction. This process utilizes end-of-waste aluminum scrap rather than virgin materials to reduce Fe and Si oxides, creating a circular economy solution that addresses two waste streams simultaneously. The process generates two valuable products with low liquidus temperatures: a ferrosilicon alloy (FeSi15-50 grade) and a residual oxide rich in calcium and magnesium aluminates suitable for cementitious or ceramic applications. Through the integration of FactSage thermodynamic simulations with experimental validation, it is possible to predict and control phase evolution during equilibrium cooling, an approach not previously applied to LF slag valorization. Experimental validation using industrial slags confirms the theoretical predictions and demonstrates the process operates in a near-energy-neutral, self-sustaining mode by recovering both chemical and sensible thermal energy (50–100 kWh per ton of slag). This represents approximately 90% lower energy consumption compared to conventional ferrosilicon production. The work provides a comprehensive and scalable approach to transform a problematic waste material into valuable products, supporting circular economy principles and low-carbon metallurgy objectives.
Aluminothermic Recovery of Strategic Ferroalloys from Ladle Slag: An Integrated Thermodynamic and Experimental Approach
Disconzi, Filippo;Brunelli, Katya;Ardit, Matteo;Artioli, Gilberto
2025
Abstract
Ladle slag (LF slag) is a by-product of secondary steelmaking that presents unique valorization challenges compared to BOF or EAF slags due to its distinctive chemical composition (high Al2O3 and CaO content) and uncontrolled hydraulic activity. While other steelmaking slags can be reused as supplementary cementitious materials or aggregates, LF slag is predominantly landfilled, with over 2 million tons discarded annually in Europe alone. This study introduces a novel pyrometallurgical valorization strategy that, unlike conventional approaches focused solely on mineral recovery, simultaneously recovers both metallic and mineral value through aluminothermic reduction. This process utilizes end-of-waste aluminum scrap rather than virgin materials to reduce Fe and Si oxides, creating a circular economy solution that addresses two waste streams simultaneously. The process generates two valuable products with low liquidus temperatures: a ferrosilicon alloy (FeSi15-50 grade) and a residual oxide rich in calcium and magnesium aluminates suitable for cementitious or ceramic applications. Through the integration of FactSage thermodynamic simulations with experimental validation, it is possible to predict and control phase evolution during equilibrium cooling, an approach not previously applied to LF slag valorization. Experimental validation using industrial slags confirms the theoretical predictions and demonstrates the process operates in a near-energy-neutral, self-sustaining mode by recovering both chemical and sensible thermal energy (50–100 kWh per ton of slag). This represents approximately 90% lower energy consumption compared to conventional ferrosilicon production. The work provides a comprehensive and scalable approach to transform a problematic waste material into valuable products, supporting circular economy principles and low-carbon metallurgy objectives.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




