In this article we show that finite perturbative corrections in non-supersymmetric strings can be understood via an interplay between modular invariance and misaligned supersymmetry. While modular invariance is known to be crucial in closed-string models, its presence and role for open strings is more subtle. Nevertheless, we argue that it leads to cancellations in physical quantities such as the one-loop cosmological constant and prevents them from diverging. In particular, we show that if the sector-averaged number of states does not grow exponentially, as predicted by misaligned supersymmetry, all exponential divergences in the one-loop cosmological constant cancel out as well. To account for the absence of power-law divergences, instead, we need to resort to the modular structure of the partition function. We finally comment on the presence of misaligned supersymmetry in the known 10-dimensional tachyon-free non-supersymmetric string theories.
Modular invariance, misalignment and finiteness in non-supersymmetric strings
Cribiori N.;Tonioni F.;
2022
Abstract
In this article we show that finite perturbative corrections in non-supersymmetric strings can be understood via an interplay between modular invariance and misaligned supersymmetry. While modular invariance is known to be crucial in closed-string models, its presence and role for open strings is more subtle. Nevertheless, we argue that it leads to cancellations in physical quantities such as the one-loop cosmological constant and prevents them from diverging. In particular, we show that if the sector-averaged number of states does not grow exponentially, as predicted by misaligned supersymmetry, all exponential divergences in the one-loop cosmological constant cancel out as well. To account for the absence of power-law divergences, instead, we need to resort to the modular structure of the partition function. We finally comment on the presence of misaligned supersymmetry in the known 10-dimensional tachyon-free non-supersymmetric string theories.| File | Dimensione | Formato | |
|---|---|---|---|
|
unpaywall-bitstream--1182004165.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
738.23 kB
Formato
Adobe PDF
|
738.23 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




