The ability of the neuropeptide oxytocin to affect glial cell function is receiving increasing attention. We previously reported that oxytocin at a low nanomolar concentration could inhibit both astrocytic Ca2+ signals and glutamate release. Here, we investigate the ability of oxytocin receptors to couple both inhibitory and stimulatory pathways in astrocytes, as already reported in neurons. We assessed the effects of oxytocin at concentrations ranging from low to high in the nanomolar range on intracellular Ca2+ signals and on the glutamate release in astrocyte processes freshly prepared from the striatum of adult rats. Our main findings are as follows: oxytocin could induce dual responses in astrocyte processes, namely the inhibition and facilitation of both Ca2+ signals and glutamate release; the inhibitory and the facilitatory response appeared dependent on activation of the Gi and the Gq pathway, respectively; both inhibitory and facilitatory responses were evoked at the same nanomolar oxytocin concentrations; and the biased agonists atosiban and carbetocin could duplicate oxytocin’s inhibitory and facilitatory response, respectively. In conclusion, due to the coupling of striatal astrocytic oxytocin receptors to different transduction pathways and the dual effects on Ca2+ signals and glutamate release, oxytocin could also play a crucial role in neuron–astrocyte bi-directional communication through a subtle regulation of striatal glutamatergic synapses. Therefore, astrocytic oxytocin receptors may offer pharmacological targets to regulate glutamatergic striatal transmission, which is potentially useful in neuropsychiatric disorders and in neurodegenerative diseases.
Dual Oxytocin Signals in Striatal Astrocytes
Guidolin, DiegoInvestigation
;
2025
Abstract
The ability of the neuropeptide oxytocin to affect glial cell function is receiving increasing attention. We previously reported that oxytocin at a low nanomolar concentration could inhibit both astrocytic Ca2+ signals and glutamate release. Here, we investigate the ability of oxytocin receptors to couple both inhibitory and stimulatory pathways in astrocytes, as already reported in neurons. We assessed the effects of oxytocin at concentrations ranging from low to high in the nanomolar range on intracellular Ca2+ signals and on the glutamate release in astrocyte processes freshly prepared from the striatum of adult rats. Our main findings are as follows: oxytocin could induce dual responses in astrocyte processes, namely the inhibition and facilitation of both Ca2+ signals and glutamate release; the inhibitory and the facilitatory response appeared dependent on activation of the Gi and the Gq pathway, respectively; both inhibitory and facilitatory responses were evoked at the same nanomolar oxytocin concentrations; and the biased agonists atosiban and carbetocin could duplicate oxytocin’s inhibitory and facilitatory response, respectively. In conclusion, due to the coupling of striatal astrocytic oxytocin receptors to different transduction pathways and the dual effects on Ca2+ signals and glutamate release, oxytocin could also play a crucial role in neuron–astrocyte bi-directional communication through a subtle regulation of striatal glutamatergic synapses. Therefore, astrocytic oxytocin receptors may offer pharmacological targets to regulate glutamatergic striatal transmission, which is potentially useful in neuropsychiatric disorders and in neurodegenerative diseases.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.