The paper deals with the assembling, integration, and test (AIT) phase of the laboratory model of an innovative telescope in the framework of the project DORA (deployable optics for remote sensing applications). The telescope is a Cassegrain type of instrument, with an entrance pupil of ∅300 mm, f/16 aperture, and FOV of 0.16°. It has been designed to be mounted onboard a micro-satellite frame, allowing for switching between a stowed configuration during the launch phase and a deployed one once in orbit. The telescope is matched to an infrared Fourier spectrometer, operating in the spectral range of 5–25 (Formula presented.) m, for the observation of terrestrial atmospheric phenomena, but it can also be adopted for planetary exploration missions. The telescope breadboard has been assembled in the INAF-IAPS premises and has undergone measurements for the determination of the accuracy and repeatability of the mechanism opening. The mechanical tests have demonstrated that the deployment mechanism adopted complies with the requirements imposed by the infrared Fourier spectrometer, guaranteeing a repositioning of the secondary mirror with respect to the primary mirror within 100 (Formula presented.) m (in-plane displacement) and 0.01° (tilt) of the nominal position.
The Assembly, Integration and Test of the DORA Telescope, a Deployable Optics System in Space for Remote Sensing Applications
Saggin, BortolinoMembro del Collaboration Group
2025
Abstract
The paper deals with the assembling, integration, and test (AIT) phase of the laboratory model of an innovative telescope in the framework of the project DORA (deployable optics for remote sensing applications). The telescope is a Cassegrain type of instrument, with an entrance pupil of ∅300 mm, f/16 aperture, and FOV of 0.16°. It has been designed to be mounted onboard a micro-satellite frame, allowing for switching between a stowed configuration during the launch phase and a deployed one once in orbit. The telescope is matched to an infrared Fourier spectrometer, operating in the spectral range of 5–25 (Formula presented.) m, for the observation of terrestrial atmospheric phenomena, but it can also be adopted for planetary exploration missions. The telescope breadboard has been assembled in the INAF-IAPS premises and has undergone measurements for the determination of the accuracy and repeatability of the mechanism opening. The mechanical tests have demonstrated that the deployment mechanism adopted complies with the requirements imposed by the infrared Fourier spectrometer, guaranteeing a repositioning of the secondary mirror with respect to the primary mirror within 100 (Formula presented.) m (in-plane displacement) and 0.01° (tilt) of the nominal position.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.