: Logarithmic growth-rates are fundamental observables for describing ecological systems and the characterization of their distributions with analytical techniques can greatly improve their comprehension. Here a neutral model based on a stochastic differential equation with demographic noise, which presents a closed form for these distributions, is used to describe the population dynamics of microbiota. Results show that this model can successfully reproduce the log-growth rate distribution of the considered abundance time-series. More significantly, it predicts its temporal dependence, by reproducing its kurtosis evolution when the time lag τ is increased. Furthermore, its typical shape for large τ is assessed, verifying that the distribution variance does not diverge with τ. The simulated processes generated by the calibrated stochastic equation and the analysis of each time-series, taken one by one, provided additional support for our approach. Alternatively, we tried to describe our dataset by using a logistic neutral model with an environmental stochastic term. Analytical and numerical results show that this model is not suited for describing the leptokurtic log-growth rates distribution found in our data. These results support an effective neutral model with demographic stochasticity for describing the considered microbiota.

Growth-rate distributions of gut microbiota time series

Azaele S.
2025

Abstract

: Logarithmic growth-rates are fundamental observables for describing ecological systems and the characterization of their distributions with analytical techniques can greatly improve their comprehension. Here a neutral model based on a stochastic differential equation with demographic noise, which presents a closed form for these distributions, is used to describe the population dynamics of microbiota. Results show that this model can successfully reproduce the log-growth rate distribution of the considered abundance time-series. More significantly, it predicts its temporal dependence, by reproducing its kurtosis evolution when the time lag τ is increased. Furthermore, its typical shape for large τ is assessed, verifying that the distribution variance does not diverge with τ. The simulated processes generated by the calibrated stochastic equation and the analysis of each time-series, taken one by one, provided additional support for our approach. Alternatively, we tried to describe our dataset by using a logistic neutral model with an environmental stochastic term. Analytical and numerical results show that this model is not suited for describing the leptokurtic log-growth rates distribution found in our data. These results support an effective neutral model with demographic stochasticity for describing the considered microbiota.
2025
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1807632144.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 4.13 MB
Formato Adobe PDF
4.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3562697
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex 2
social impact