Phagocytes initiate immunity to invading microorganisms by detecting pathogen-associated molecular patterns via pattern recognition receptors. Pathogen encounter and consequent activation of the immune system cause tissue damage and the release of host-derived damage-associated molecular patterns, contributing to shape immunity. However, how self-derived factors are sensed by phagocytes and impact the immune response remains poorly understood. Here, we demonstrated that host-derived oxidized phospholipids (oxPLs) are formed after microbial encounter in both mice and humans. oxPLs exacerbated inflammation without affecting pathogen burden. Mechanistically, oxPLs bound and inhibited AKT, potentiating the methionine cycle and the activity of the epigenetic writer EZH2. EZH2 epigenetically dampened the pluripotent anti-inflammatory cytokine IL-10, contributing to the death of the host. Overall, we found that host-derived oxPLs set the balance between protective and detrimental antimicrobial responses and that they can be prophylactically or therapeutically targeted to protect the host against deranged inflammation and immunopathology.
Epigenetic silencing of interleukin-10 by host-derived oxidized phospholipids supports a lethal inflammatory response to infections
Meloni, FedericaMembro del Collaboration Group
;
2025
Abstract
Phagocytes initiate immunity to invading microorganisms by detecting pathogen-associated molecular patterns via pattern recognition receptors. Pathogen encounter and consequent activation of the immune system cause tissue damage and the release of host-derived damage-associated molecular patterns, contributing to shape immunity. However, how self-derived factors are sensed by phagocytes and impact the immune response remains poorly understood. Here, we demonstrated that host-derived oxidized phospholipids (oxPLs) are formed after microbial encounter in both mice and humans. oxPLs exacerbated inflammation without affecting pathogen burden. Mechanistically, oxPLs bound and inhibited AKT, potentiating the methionine cycle and the activity of the epigenetic writer EZH2. EZH2 epigenetically dampened the pluripotent anti-inflammatory cytokine IL-10, contributing to the death of the host. Overall, we found that host-derived oxPLs set the balance between protective and detrimental antimicrobial responses and that they can be prophylactically or therapeutically targeted to protect the host against deranged inflammation and immunopathology.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.