Magnetic gears are becoming promising devices that can replace conventional mechanical gears in several applications, where reduced maintenance, absence of lubrication and intrinsic overload protection are especially relevant. This paper focuses on the experimental analysis of a coaxial magnetic gear prototype recently developed at the Department of Industrial Engineering of the University of Padova. It is found that its efficiency is high and aligned with prototypes in the literature, its stationary response confirms the velocity ratio of the corresponding mechanical planetary gear, the overload protection is aligned with numerical prediction, while the dynamic response highlights that the intrinsic compliance of the magnetic coupling prevents the use of such device in high-frequency transients. It is concluded that the proposed architecture can be effectively employed for speed reducers applications where low-frequency modulation is sufficient, which includes many industrial applications. Nevertheless, high rotational speeds are allowed. The performance characteristics, although specific for the prototype considered, experimentally highlights the key features of coaxial magnetic gear devices. The experimental performance are also compared with estimations from the literature, when available.
Experimental Analysis of a Coaxial Magnetic Gear Prototype
Lovato S.;Barosco G.;Ortombina L.;Torchio R.;Alotto P.;Massaro M.
2025
Abstract
Magnetic gears are becoming promising devices that can replace conventional mechanical gears in several applications, where reduced maintenance, absence of lubrication and intrinsic overload protection are especially relevant. This paper focuses on the experimental analysis of a coaxial magnetic gear prototype recently developed at the Department of Industrial Engineering of the University of Padova. It is found that its efficiency is high and aligned with prototypes in the literature, its stationary response confirms the velocity ratio of the corresponding mechanical planetary gear, the overload protection is aligned with numerical prediction, while the dynamic response highlights that the intrinsic compliance of the magnetic coupling prevents the use of such device in high-frequency transients. It is concluded that the proposed architecture can be effectively employed for speed reducers applications where low-frequency modulation is sufficient, which includes many industrial applications. Nevertheless, high rotational speeds are allowed. The performance characteristics, although specific for the prototype considered, experimentally highlights the key features of coaxial magnetic gear devices. The experimental performance are also compared with estimations from the literature, when available.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.