We present a search for the diffuse extremely-high-energy neutrino flux using 12.6 years of IceCube data. The nonobservation of neutrinos with energies well above 10 PeV constrains the all-flavor neutrino flux at 1018 eV to a level of E2φνe+νμ+ντ≃10-8 GeV cm-2 s-1 sr-1, the most stringent limit to date. Using these data, we constrain the proton fraction of ultrahigh-energy cosmic rays (UHECRs) above ≃30 EeV to be ≲70% (at 90% CL) if the cosmological evolution of the sources is comparable to or stronger than the star formation rate. This is the first result to disfavor the "proton-only"hypothesis for UHECR in this evolution regime using neutrino data. This result complements direct air-shower measurements by being insensitive to uncertainties associated with hadronic interaction models. We also evaluate the tension between IceCube-s nonobservation and the ∼200 PeV KM3NeT neutrino candidate (KM3-230213A), finding it to be ∼2.9σ based on a joint-livetime fit between neutrino datasets.

Search for Extremely-High-Energy Neutrinos and First Constraints on the Ultrahigh-Energy Cosmic-Ray Proton Fraction with IceCube

Bernardini E.;Boscolo Meneguolo C.;Chau N.;Chen Z.;Mancina S.;
2025

Abstract

We present a search for the diffuse extremely-high-energy neutrino flux using 12.6 years of IceCube data. The nonobservation of neutrinos with energies well above 10 PeV constrains the all-flavor neutrino flux at 1018 eV to a level of E2φνe+νμ+ντ≃10-8 GeV cm-2 s-1 sr-1, the most stringent limit to date. Using these data, we constrain the proton fraction of ultrahigh-energy cosmic rays (UHECRs) above ≃30 EeV to be ≲70% (at 90% CL) if the cosmological evolution of the sources is comparable to or stronger than the star formation rate. This is the first result to disfavor the "proton-only"hypothesis for UHECR in this evolution regime using neutrino data. This result complements direct air-shower measurements by being insensitive to uncertainties associated with hadronic interaction models. We also evaluate the tension between IceCube-s nonobservation and the ∼200 PeV KM3NeT neutrino candidate (KM3-230213A), finding it to be ∼2.9σ based on a joint-livetime fit between neutrino datasets.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3560751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact