The oxygen evolution reaction (OER), extensively investigated over the last decade for energy-related end-uses, still remains the bottleneck hindering a large-scale exploitation of water splitting to produce green hydrogen as a clean energy vector. Among the possible electrocatalysts, nanomaterials based on nickel(II) oxide are attracting considerable interest. In this context, the present investigation reports the results of the XPS analysis of NiO nanoarchitectures obtained by plasma-assisted chemical vapor deposition (PA-CVD) on conducting glass substrates from a fluorinated Ni(II) precursor. The growth at two different temperatures (100 and 400 °C) yielded, respectively, quasi-1D structures and polycrystalline porous systems, characterized, respectively, by the occurrence of surface C-F moieties and F distributed in the NiO network. The reported spectra include survey scans and high-resolution spectra of Ni 2p, O 1s, F 1s, and C 1s core-levels, recorded using monochromatic Al-Kα radiation. The present data provide a reference for NiO-based materials deposited by chemical or physical vapor deposition methods.

XPS analysis of F-containing NiO nanoarchitectures fabricated by plasma-assisted chemical vapor deposition

Maccato, Chiara;Gasparotto, Alberto;Rizzi, Gian Andrea
2025

Abstract

The oxygen evolution reaction (OER), extensively investigated over the last decade for energy-related end-uses, still remains the bottleneck hindering a large-scale exploitation of water splitting to produce green hydrogen as a clean energy vector. Among the possible electrocatalysts, nanomaterials based on nickel(II) oxide are attracting considerable interest. In this context, the present investigation reports the results of the XPS analysis of NiO nanoarchitectures obtained by plasma-assisted chemical vapor deposition (PA-CVD) on conducting glass substrates from a fluorinated Ni(II) precursor. The growth at two different temperatures (100 and 400 °C) yielded, respectively, quasi-1D structures and polycrystalline porous systems, characterized, respectively, by the occurrence of surface C-F moieties and F distributed in the NiO network. The reported spectra include survey scans and high-resolution spectra of Ni 2p, O 1s, F 1s, and C 1s core-levels, recorded using monochromatic Al-Kα radiation. The present data provide a reference for NiO-based materials deposited by chemical or physical vapor deposition methods.
2025
File in questo prodotto:
File Dimensione Formato  
024005_1_6.0004637.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 3.5 MB
Formato Adobe PDF
3.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3560210
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact