Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are wood-boring insects studied as examples of fungus-insect symbiosis and for their success as invasive species. While most research on their microbiota has focused on fungal associates, their bacterial communities remain largely understudied. In this review, we synthesize current knowledge on the bacterial microbiota of ambrosia beetles, identify critical gaps in the field, and provide recommendations for future research. To date, eight metabarcoding studies have explored bacterial communities in ambrosia beetles, analyzing a total of 13 species, mostly within the tribe Xyleborini (Scolytinae). These studies have examined the presence of bacteria in ambrosia beetle mycetangia, organs specialized for transporting fungal symbionts, as well as bacterial diversity in fungal gardens and whole beetles, across different life stages, and under varying environmental conditions. In general, bacterial communities appear to be highly ...

Bacterial communities associated with ambrosia beetles: current knowledge and existing gaps

Cambronero-Heinrichs JC
;
Besana L;Battisti A;Rassati D
2025

Abstract

Ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are wood-boring insects studied as examples of fungus-insect symbiosis and for their success as invasive species. While most research on their microbiota has focused on fungal associates, their bacterial communities remain largely understudied. In this review, we synthesize current knowledge on the bacterial microbiota of ambrosia beetles, identify critical gaps in the field, and provide recommendations for future research. To date, eight metabarcoding studies have explored bacterial communities in ambrosia beetles, analyzing a total of 13 species, mostly within the tribe Xyleborini (Scolytinae). These studies have examined the presence of bacteria in ambrosia beetle mycetangia, organs specialized for transporting fungal symbionts, as well as bacterial diversity in fungal gardens and whole beetles, across different life stages, and under varying environmental conditions. In general, bacterial communities appear to be highly ...
File in questo prodotto:
File Dimensione Formato  
Cambronero-Heinrichs et al_Review_Bacteriome_FRONTMIC.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 791.69 kB
Formato Adobe PDF
791.69 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3559922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact