Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with the Hybrid III dummy, focused on tunable flexural stiffness and integrated angular sensors for kinematic feedback during impact tests. The neck features six 3D-printed surrogate vertebral bodies interconnected by rubber surrogate discs, providing a baseline flexibility to the surrogate fundamental spinal units. An adjustable inner cable and elastic elements hooked on the sides of vertebral elements allow to increase the flexural stiffness of the surrogate and to simulate the asymmetric behavior of the human neck. Neck flexural angles and axial compression are measured using a novel system made of wires, pulleys, and rotary potentiometers embedded in the neck base. A motion capture system and a load cell were used to determine the bending and torsional stiffness of the neck and to calibrate the sensors. Results showed that the neck flexural stiffness can be tuned between 3.29 and 5.76 Nm/rad. Torsional stiffness was 1.01 Nm/rad and compression stiffness can be tuned from 39 to 193 N/mm. Sensor flexural angles were compared with motion capture angles, showing an RMSE error of 1.35° during static testing and of 3° during dynamic testing. The developed neck could be a viable tool for investigating neck braces from a kinematic and kinetic perspective due to its inbuilt sensing ability and its tunable stiffness.

Development of the Biofidelic Instrumented Neck Surrogate (BINS) with Tunable Stiffness and Embedded Kinematic Sensors for Application in Static Tests and Low-Energy Impacts

Zullo, Giuseppe
;
Baldoin, Elisa;Petrone, Nicola
2025

Abstract

Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with the Hybrid III dummy, focused on tunable flexural stiffness and integrated angular sensors for kinematic feedback during impact tests. The neck features six 3D-printed surrogate vertebral bodies interconnected by rubber surrogate discs, providing a baseline flexibility to the surrogate fundamental spinal units. An adjustable inner cable and elastic elements hooked on the sides of vertebral elements allow to increase the flexural stiffness of the surrogate and to simulate the asymmetric behavior of the human neck. Neck flexural angles and axial compression are measured using a novel system made of wires, pulleys, and rotary potentiometers embedded in the neck base. A motion capture system and a load cell were used to determine the bending and torsional stiffness of the neck and to calibrate the sensors. Results showed that the neck flexural stiffness can be tuned between 3.29 and 5.76 Nm/rad. Torsional stiffness was 1.01 Nm/rad and compression stiffness can be tuned from 39 to 193 N/mm. Sensor flexural angles were compared with motion capture angles, showing an RMSE error of 1.35° during static testing and of 3° during dynamic testing. The developed neck could be a viable tool for investigating neck braces from a kinematic and kinetic perspective due to its inbuilt sensing ability and its tunable stiffness.
2025
File in questo prodotto:
File Dimensione Formato  
sensors-25-04925.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3559040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact