This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and 800 °C on microstructure, residual stress, and electrochemical performance. Specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical techniques. A novel microcapillary electrochemical method was employed to precisely assess passive layer stability and corrosion behaviour under simulated oral conditions, including fluoride contamination and tensile loading. Results show that heat treatments up to 600 °C effectively reduce residual stress with minimal impact on corrosion resistance. However, 800 °C treatment leads to a phase transformation from α′ martensite to a dual-phase α + β structure, significantly compromising passive film integrity. The findings establish 600 °C as the optimal stress-relieving temperature for balancing mechanical stability and electrochemical performance in biomedical and aerospace components.
Residual Stress and Corrosion Performance in L-PBF Ti6Al4V: Unveiling the Optimum Stress Relieving Temperature via Microcapillary Electrochemical Characterisation
Lorenzo D’Ambrosi;Katya Brunelli
;Francesco Cammelli;Arshad Yazdanpanah
2025
Abstract
This study aims to determine the optimal low-temperature stress relieving heat treatment that minimizes residual stresses while preserving corrosion resistance in Laser Powder Bed Fusion (L-PBF) processed Ti6Al4V alloy. Specifically, it investigates the effects of stress relieving at 400 °C, 600 °C, and 800 °C on microstructure, residual stress, and electrochemical performance. Specimens were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical techniques. A novel microcapillary electrochemical method was employed to precisely assess passive layer stability and corrosion behaviour under simulated oral conditions, including fluoride contamination and tensile loading. Results show that heat treatments up to 600 °C effectively reduce residual stress with minimal impact on corrosion resistance. However, 800 °C treatment leads to a phase transformation from α′ martensite to a dual-phase α + β structure, significantly compromising passive film integrity. The findings establish 600 °C as the optimal stress-relieving temperature for balancing mechanical stability and electrochemical performance in biomedical and aerospace components.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.