Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment connectivity in two forest catchments in south-central Chile with a Mediterranean climate. Using digital terrain models and the Index of Connectivity, scenarios with and without windrows were compared. Despite similar windrow characteristics, effectiveness varied between catchments. In catchment N01 (12.6 ha, average slope 0.28 m m−1), with 13.6% windrow coverage, connectivity remained unchanged, but in contrast, catchment N02 (14 ha, average slope 0.27 m m−1), with 21.9% coverage, showed a significant connectivity reduction. A key factor was windrows’ orientation: 83.9% aligned with contour lines in N02 versus 58.6% in N01. Distance to drainage channels also played a role, with the decreasing effect of connectivity at 50–60 m in N02. Bootstrap analysis confirmed significant differences between catchments. These results suggest that windrow configuration, particularly contour alignment, may be more critical than coverage percentage. For effective connectivity reduction, especially on moderate to steep slopes, forest managers should prioritize contour-aligned windrows. This study enhances our understanding of structural sediment connectivity and offers practical insights for sustainable post-harvest forest management.

Effects of a Post-Harvest Management Practice on Structural Connectivity in Catchments with a Mediterranean Climate

Sanhueza, Daniel;Martini, Lorenzo;Picco, Lorenzo
2025

Abstract

Forest harvesting can alter sedimentary processes in catchments by reducing vegetation cover and exposing the soil surface. To mitigate these effects, post-harvest residue management is commonly used, though its effectiveness needs individual evaluation. This study assessed how windrowed harvest residues influence structural sediment connectivity in two forest catchments in south-central Chile with a Mediterranean climate. Using digital terrain models and the Index of Connectivity, scenarios with and without windrows were compared. Despite similar windrow characteristics, effectiveness varied between catchments. In catchment N01 (12.6 ha, average slope 0.28 m m−1), with 13.6% windrow coverage, connectivity remained unchanged, but in contrast, catchment N02 (14 ha, average slope 0.27 m m−1), with 21.9% coverage, showed a significant connectivity reduction. A key factor was windrows’ orientation: 83.9% aligned with contour lines in N02 versus 58.6% in N01. Distance to drainage channels also played a role, with the decreasing effect of connectivity at 50–60 m in N02. Bootstrap analysis confirmed significant differences between catchments. These results suggest that windrow configuration, particularly contour alignment, may be more critical than coverage percentage. For effective connectivity reduction, especially on moderate to steep slopes, forest managers should prioritize contour-aligned windrows. This study enhances our understanding of structural sediment connectivity and offers practical insights for sustainable post-harvest forest management.
2025
File in questo prodotto:
File Dimensione Formato  
forests-16-01171-v2.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 5.63 MB
Formato Adobe PDF
5.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3557202
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact