Purpose of review: In the last 20 years, advancements in the understanding of fasciae have significantly transformed anaesthesia and surgery. Fascial plane blocks (FPBs) have gained popularity due to their validated safety profile and relative ease. They are used in various clinical settings for surgical and nonsurgical indications. Growing evidence suggests a link between the microscopic anatomy of fasciae and their mechanism of action. As a result, knowledge of these aspects is urgently needed to better optimise pain management. The purpose of this review is to summarise the different microscopic aspects of deep/muscular fascia to expand our understanding in the performance of FPBs. Recent findings: There is ample evidence to support the role of FPBs in pain management. However, the exact mechanism of action remains unclear. Fasciae are composed of various structural elements and display complex anatomical characteristics at the microscopic level. They include various cell types embedded within an extracellular matrix abundant in collagens and hyaluronan. Increasingly, numerous studies demonstrated their innervation that contributes to their sensory functions and their role in proprioception, motor coordination and pain perception. Lastly, the diversity of the cellular and extracellular matrix, with their viscoelastic properties, is essential to understanding the FPBs' mechanism of action. Summary: Physicians must be aware of the role of fascial microscopic anatomy and better understand their properties to perform FPBs in a conscious manner and enhance pain management.

Fascial plane blocks: from microanatomy to clinical applications

Pirri, Carmelo
;
Stecco, Carla
2024

Abstract

Purpose of review: In the last 20 years, advancements in the understanding of fasciae have significantly transformed anaesthesia and surgery. Fascial plane blocks (FPBs) have gained popularity due to their validated safety profile and relative ease. They are used in various clinical settings for surgical and nonsurgical indications. Growing evidence suggests a link between the microscopic anatomy of fasciae and their mechanism of action. As a result, knowledge of these aspects is urgently needed to better optimise pain management. The purpose of this review is to summarise the different microscopic aspects of deep/muscular fascia to expand our understanding in the performance of FPBs. Recent findings: There is ample evidence to support the role of FPBs in pain management. However, the exact mechanism of action remains unclear. Fasciae are composed of various structural elements and display complex anatomical characteristics at the microscopic level. They include various cell types embedded within an extracellular matrix abundant in collagens and hyaluronan. Increasingly, numerous studies demonstrated their innervation that contributes to their sensory functions and their role in proprioception, motor coordination and pain perception. Lastly, the diversity of the cellular and extracellular matrix, with their viscoelastic properties, is essential to understanding the FPBs' mechanism of action. Summary: Physicians must be aware of the role of fascial microscopic anatomy and better understand their properties to perform FPBs in a conscious manner and enhance pain management.
2024
File in questo prodotto:
File Dimensione Formato  
Fascial plane blocks from microanatomy to.pdf

Open Access dal 30/06/2025

Tipologia: Accepted (AAM - Author's Accepted Manuscript)
Licenza: Creative commons
Dimensione 372.58 kB
Formato Adobe PDF
372.58 kB Adobe PDF Visualizza/Apri
fascial_plane_blocks__from_microanatomy_to.13.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 822.44 kB
Formato Adobe PDF
822.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3556241
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex 8
social impact