Ocean acidification (OA) is reported to entail a detrimental impact on calcifying organisms. Nevertheless, patellid limpets – P. caerulea, P. rustica, and P. ulyssiponensis – are able to persist in extremely low pH conditions inside the Castello Aragonese CO2 vent systems (Ischia Island), suggesting that they may have developed tolerance to OA, through plasticity and/or adaptive mechanisms. The aim of this study is to evaluate the long-term strategies adopted by limpets that spent their entire life cycle in naturally acidified conditions and the short-term ones induced by a 30-day in situ transplant experiment. Regarding native limpet populations, P. caerulea exhibited increasing size and higher energy resources in the extremely acidified site, potentially related to different food availability or to reduction in competition and/or predatory pressure; furthermore, no effects on oxidative stress, biomineralization and neurotoxicity occurred. Similarly, P. ulyssiponensis didn't exhibit a...

Short and long-term exposure to ocean acidification in limpets from the Castello Aragonese vent systems (Ischia Island, Italy)

Munari M.
Membro del Collaboration Group
;
Moro I.;D'Aniello I.;
2025

Abstract

Ocean acidification (OA) is reported to entail a detrimental impact on calcifying organisms. Nevertheless, patellid limpets – P. caerulea, P. rustica, and P. ulyssiponensis – are able to persist in extremely low pH conditions inside the Castello Aragonese CO2 vent systems (Ischia Island), suggesting that they may have developed tolerance to OA, through plasticity and/or adaptive mechanisms. The aim of this study is to evaluate the long-term strategies adopted by limpets that spent their entire life cycle in naturally acidified conditions and the short-term ones induced by a 30-day in situ transplant experiment. Regarding native limpet populations, P. caerulea exhibited increasing size and higher energy resources in the extremely acidified site, potentially related to different food availability or to reduction in competition and/or predatory pressure; furthermore, no effects on oxidative stress, biomineralization and neurotoxicity occurred. Similarly, P. ulyssiponensis didn't exhibit a...
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3555550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact