Two series of isostructural compounds resulting from the combination of the four-fold hydrogen bond donors bisamidinium cations, namely 1-2H+ and 2-2H+, and the anionic chalcocyanide clusters of general formula [Re6Qi8(CN)a6]4- are presented (Q = S or Se; where i and a denote inner and apical position, respectively). 1-2H+ is built upon two imidazolium groups linked together by a-(CH2)2-alkyl chain. 2-2H+ is built upon two hydroxyamidinium groups linked together via a phenyl group and, in consequence, it exhibits a planar geometry. This ionic association leads to either two or three-dimensional hydrogen-bonded networks in the solid state, as confirmed by X-ray crystallographic analysis. The solid-state structures arise from the recognition between the pendant-C-N ligands of the cluster cores and the amidinium H-bond donors. The luminescence properties of the compounds are investigated in the solid state by means of steady-state and time-resolved techniques. Results are discussed and compared with those measured for the parent Cs4[Re6Si8(CN)a6] and Cs4[Re6Sei8(CN)a6] species. The H-bonded networks display featureless deep-red emission bands centered at λem = 722 and 737 nm and average excited-state lifetimes ranging between 11.5 and 14.8 μs, in accordance with the triplet nature of the radiative process. These photoluminescence properties are similar to the Cs+ homologues and are attributed to the [Re6Qi8]2+ emitting core.

Hydrogen bonded networks based on hexarhenium(III) chalcocyanide cluster complexes: structural and photophysical characterization

Mauro M.;
2018

Abstract

Two series of isostructural compounds resulting from the combination of the four-fold hydrogen bond donors bisamidinium cations, namely 1-2H+ and 2-2H+, and the anionic chalcocyanide clusters of general formula [Re6Qi8(CN)a6]4- are presented (Q = S or Se; where i and a denote inner and apical position, respectively). 1-2H+ is built upon two imidazolium groups linked together by a-(CH2)2-alkyl chain. 2-2H+ is built upon two hydroxyamidinium groups linked together via a phenyl group and, in consequence, it exhibits a planar geometry. This ionic association leads to either two or three-dimensional hydrogen-bonded networks in the solid state, as confirmed by X-ray crystallographic analysis. The solid-state structures arise from the recognition between the pendant-C-N ligands of the cluster cores and the amidinium H-bond donors. The luminescence properties of the compounds are investigated in the solid state by means of steady-state and time-resolved techniques. Results are discussed and compared with those measured for the parent Cs4[Re6Si8(CN)a6] and Cs4[Re6Sei8(CN)a6] species. The H-bonded networks display featureless deep-red emission bands centered at λem = 722 and 737 nm and average excited-state lifetimes ranging between 11.5 and 14.8 μs, in accordance with the triplet nature of the radiative process. These photoluminescence properties are similar to the Cs+ homologues and are attributed to the [Re6Qi8]2+ emitting core.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3554247
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact