Background: Fragile X Syndrome (FXS) is a genetic disorder caused by the lack of FMRP, a crucial protein for brain development and function. FMR1 mutations are categorized into premutation and full mutation (FXSFull), with somatic mosaicism (FXSMos) modulating the FXS phenotype. Recent studies identified muscle activity alterations during gait in FXS children. This study aims to explore the relationship between these muscle activity changes and motor fibre recruitment strategies during gait in FXS children. Methods: Fifty-four FXS children and fourteen healthy controls participated in the study. Gait trials at self-selected speeds were recorded using four synchronized cameras and a surface electromyography system that captured bilateral activity of Gastrocnemius lateralis, Tibialis anterior, Rectus and Biceps femoris muscles. The continuous wavelet transform, using the ‘bump’ mother wavelet, provided the percentage distribution of signal energy across nine frequency bands (50-Hz increm...

Children With Fragile X Syndrome Display a Switch Towards Fast Fibres in Their Recruitment Strategy During Gait

Beghetti F.;Piatkowska W.;Guiotto A.;Polli R.;Bettella E.;di Giorgio E.;Sawacha Z.
2025

Abstract

Background: Fragile X Syndrome (FXS) is a genetic disorder caused by the lack of FMRP, a crucial protein for brain development and function. FMR1 mutations are categorized into premutation and full mutation (FXSFull), with somatic mosaicism (FXSMos) modulating the FXS phenotype. Recent studies identified muscle activity alterations during gait in FXS children. This study aims to explore the relationship between these muscle activity changes and motor fibre recruitment strategies during gait in FXS children. Methods: Fifty-four FXS children and fourteen healthy controls participated in the study. Gait trials at self-selected speeds were recorded using four synchronized cameras and a surface electromyography system that captured bilateral activity of Gastrocnemius lateralis, Tibialis anterior, Rectus and Biceps femoris muscles. The continuous wavelet transform, using the ‘bump’ mother wavelet, provided the percentage distribution of signal energy across nine frequency bands (50-Hz increm...
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3554146
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact