DNA is an exceptional building block for the fabrication of dynamic supramolecular systems with switchable geometries. Here, a self-assembled, tunable plasmonic–fluorescent nanostructure was developed. A precise sliding motion mechanism was operated through the control of strand displacement reactions, shifting two single-strand DNA (ssDNA) rails connected by a ssDNA quasi-ring structure. The system was reconfigured as a nano-mechanical structure, generating six discrete configurations, and setting specific distances between a tethered gold nanoparticle (AuNP) and a fluorophore, Sulfo-Cyanine3 (Cy3). Each configuration produced a distinct fluorescence emission intensity via plasmonic quenching/enhancement effects, and therefore the structure behaved as a nano-ruler. To optimize the system, the reversible distance-dependent fluorescence quenching or enhancement phenomena were investigated by testing AuNPs with diameters of 5, 10, and 15 nm, yielding the best performances with 10 nm AuNP...

A DNA-Based Plasmonic Nano-Ruler

Cencini A.;Bortoluzzi M.;Tonolo F.;Vianello F.;Magro M.
;
Cecconello A.
2025

Abstract

DNA is an exceptional building block for the fabrication of dynamic supramolecular systems with switchable geometries. Here, a self-assembled, tunable plasmonic–fluorescent nanostructure was developed. A precise sliding motion mechanism was operated through the control of strand displacement reactions, shifting two single-strand DNA (ssDNA) rails connected by a ssDNA quasi-ring structure. The system was reconfigured as a nano-mechanical structure, generating six discrete configurations, and setting specific distances between a tethered gold nanoparticle (AuNP) and a fluorophore, Sulfo-Cyanine3 (Cy3). Each configuration produced a distinct fluorescence emission intensity via plasmonic quenching/enhancement effects, and therefore the structure behaved as a nano-ruler. To optimize the system, the reversible distance-dependent fluorescence quenching or enhancement phenomena were investigated by testing AuNPs with diameters of 5, 10, and 15 nm, yielding the best performances with 10 nm AuNP...
File in questo prodotto:
File Dimensione Formato  
ijms-26-02557.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 5.21 MB
Formato Adobe PDF
5.21 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3554055
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact