We perform direct numerical simulations to study the effect of the gravity centre offset in spherical Rayleigh-Bénard convection. When the gravity centre is shifted towards the south, we find that the shift of the gravity centre has a pronounced influence on the flow structures. At low Rayleigh number Formula Presented, a steady-state large-scale meridional circulation induced by the baroclinic imbalance, created by the misalignment of the gravity potentials and isotherms, is formed. At high Formula Presented, an energetic jet is created on the northern side of the inner sphere that is directed towards the outer sphere. The large-scale circulation induces a strong co-latitudinal dependence in the local heat flux. Nevertheless, the global heat flux is not affected by the changes in the large-scale flow organization induced by the gravity centre offset.

Off-centre gravity induces large-scale flow patterns in spherical Rayleigh–Bénard convection

Santelli, Luca;
2022

Abstract

We perform direct numerical simulations to study the effect of the gravity centre offset in spherical Rayleigh-Bénard convection. When the gravity centre is shifted towards the south, we find that the shift of the gravity centre has a pronounced influence on the flow structures. At low Rayleigh number Formula Presented, a steady-state large-scale meridional circulation induced by the baroclinic imbalance, created by the misalignment of the gravity potentials and isotherms, is formed. At high Formula Presented, an energetic jet is created on the northern side of the inner sphere that is directed towards the outer sphere. The large-scale circulation induces a strong co-latitudinal dependence in the local heat flux. Nevertheless, the global heat flux is not affected by the changes in the large-scale flow organization induced by the gravity centre offset.
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream--454445509.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3552598
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact