Diophantine equations are a popular and active area of research in number theory. In this paper we consider Mordell equations, which are of the form y2=x3+d, where d is a (given) nonzero integer number and all solutions in integers x and y have to be determined. One non-elementary approach for this problem is the resolution via descent and class groups. Along these lines we formalized in Lean 3 the resolution of Mordell equations for several instances of d<0. In order to achieve this, we needed to formalize several other theories from number theory that are interesting on their own as well, such as ideal norms, quadratic fields and rings, and explicit computations of the class number. Moreover, we introduced new computational tactics in order to carry out efficiently computations in quadratic rings and beyond.

Formalized Class Group Computations and Integral Points on Mordell Elliptic Curves

Coppola N.;
2023

Abstract

Diophantine equations are a popular and active area of research in number theory. In this paper we consider Mordell equations, which are of the form y2=x3+d, where d is a (given) nonzero integer number and all solutions in integers x and y have to be determined. One non-elementary approach for this problem is the resolution via descent and class groups. Along these lines we formalized in Lean 3 the resolution of Mordell equations for several instances of d<0. In order to achieve this, we needed to formalize several other theories from number theory that are interesting on their own as well, such as ideal norms, quadratic fields and rings, and explicit computations of the class number. Moreover, we introduced new computational tactics in order to carry out efficiently computations in quadratic rings and beyond.
2023
CPP 2023 - Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs, co-located with POPL 2023
12th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2023 - Co-located with POPL 2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3551906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact