Acoustic Side-Channel Attacks (ASCAs) extract sensitive information by using audio emitted from a computing devices and their peripherals. Attacks targeting keyboards are popular and have been explored in the literature. However, similar attacks targeting other human-interface peripherals, such as computer mice, are under-explored. To this end, this paper considers security leakage via acoustic signals emanating from normal mouse usage. We first confirm feasibility of such attacks by showing a proof-of-concept attack that classifies four mouse movements with 97% accuracy in a controlled environment. We then evolve the attack towards discerning twelve unique mouse movements using a smartphone to record the experiment. Using Machine Learning (ML) techniques, the model is trained on an experiment with six participants to be generalizable and discern among twelve movements with 94% accuracy. In addition, we experiment with an attack that detects a user action of closing a full-screen windo...

Acoustic Side-Channel Attacks on a Computer Mouse

Mauro Conti;Gabriele Orazi
;
2024

Abstract

Acoustic Side-Channel Attacks (ASCAs) extract sensitive information by using audio emitted from a computing devices and their peripherals. Attacks targeting keyboards are popular and have been explored in the literature. However, similar attacks targeting other human-interface peripherals, such as computer mice, are under-explored. To this end, this paper considers security leakage via acoustic signals emanating from normal mouse usage. We first confirm feasibility of such attacks by showing a proof-of-concept attack that classifies four mouse movements with 97% accuracy in a controlled environment. We then evolve the attack towards discerning twelve unique mouse movements using a smartphone to record the experiment. Using Machine Learning (ML) techniques, the model is trained on an experiment with six participants to be generalizable and discern among twelve movements with 94% accuracy. In addition, we experiment with an attack that detects a user action of closing a full-screen windo...
2024
Lecture Notes in Computer Science ((LNCS,volume 14828))
21st International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2024
9783031641701
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3551277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact