This paper presents categorical formulations of Turing, Medvedev, Muchnik, and Weihrauch reducibilities in Computability Theory, utilizing Lawvere doctrines. While the first notions lend themselves to a smooth categorical presentation, essentially dualizing the traditional idea of realizability doctrines, Weihrauch reducibility and its extensions to represented and multi-represented spaces require a separate investigation. Our abstract analysis of these concepts highlights a shared characteristic among all these reducibilities. Specifically, we demonstrate that all these doctrines stemming from computability concepts can be proven to be instances of completions of quantifiers for doctrines, analogous to what occurs for doctrines for realizability. As a corollary of these results, we will be able to formally compare Weihrauch reducibility with the dialectica doctrine constructed from a doctrine representing Turing degrees.

CATEGORIFYING COMPUTABLE REDUCIBILITIES

Trotta D.
;
2025

Abstract

This paper presents categorical formulations of Turing, Medvedev, Muchnik, and Weihrauch reducibilities in Computability Theory, utilizing Lawvere doctrines. While the first notions lend themselves to a smooth categorical presentation, essentially dualizing the traditional idea of realizability doctrines, Weihrauch reducibility and its extensions to represented and multi-represented spaces require a separate investigation. Our abstract analysis of these concepts highlights a shared characteristic among all these reducibilities. Specifically, we demonstrate that all these doctrines stemming from computability concepts can be proven to be instances of completions of quantifiers for doctrines, analogous to what occurs for doctrines for realizability. As a corollary of these results, we will be able to formally compare Weihrauch reducibility with the dialectica doctrine constructed from a doctrine representing Turing degrees.
File in questo prodotto:
File Dimensione Formato  
trotta_lmcs.pdf

accesso aperto

Descrizione: pdf articolo pubblicato
Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 589.43 kB
Formato Adobe PDF
589.43 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3551268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact