This paper presents categorical formulations of Turing, Medvedev, Muchnik, and Weihrauch reducibilities in Computability Theory, utilizing Lawvere doctrines. While the first notions lend themselves to a smooth categorical presentation, essentially dualizing the traditional idea of realizability doctrines, Weihrauch reducibility and its extensions to represented and multi-represented spaces require a separate investigation. Our abstract analysis of these concepts highlights a shared characteristic among all these reducibilities. Specifically, we demonstrate that all these doctrines stemming from computability concepts can be proven to be instances of completions of quantifiers for doctrines, analogous to what occurs for doctrines for realizability. As a corollary of these results, we will be able to formally compare Weihrauch reducibility with the dialectica doctrine constructed from a doctrine representing Turing degrees.
CATEGORIFYING COMPUTABLE REDUCIBILITIES
Trotta D.
;
2025
Abstract
This paper presents categorical formulations of Turing, Medvedev, Muchnik, and Weihrauch reducibilities in Computability Theory, utilizing Lawvere doctrines. While the first notions lend themselves to a smooth categorical presentation, essentially dualizing the traditional idea of realizability doctrines, Weihrauch reducibility and its extensions to represented and multi-represented spaces require a separate investigation. Our abstract analysis of these concepts highlights a shared characteristic among all these reducibilities. Specifically, we demonstrate that all these doctrines stemming from computability concepts can be proven to be instances of completions of quantifiers for doctrines, analogous to what occurs for doctrines for realizability. As a corollary of these results, we will be able to formally compare Weihrauch reducibility with the dialectica doctrine constructed from a doctrine representing Turing degrees.| File | Dimensione | Formato | |
|---|---|---|---|
|
trotta_lmcs.pdf
accesso aperto
Descrizione: pdf articolo pubblicato
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
589.43 kB
Formato
Adobe PDF
|
589.43 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




