We consider the following nonlinear Choquard equation −Δu+Vu=(Iα∗|u|p)|u|p−2uinΩ⊂RN, where N≥2, p∈(1,+∞), V(x) is a continuous radial function such that infx∈ΩV>0 and Iα(x) is the Riesz potential of order α∈(0,N). Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when Ω is an annulus, or an exterior domain of the form RN∖Br(0)¯. We also provide a nonexistence result: if p≥[Formula presented] the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting α→0+ we recover existence results for the corresponding local problem with power-type nonlinearity.

Boundary value problems for Choquard equations

Cesaroni A.
2025

Abstract

We consider the following nonlinear Choquard equation −Δu+Vu=(Iα∗|u|p)|u|p−2uinΩ⊂RN, where N≥2, p∈(1,+∞), V(x) is a continuous radial function such that infx∈ΩV>0 and Iα(x) is the Riesz potential of order α∈(0,N). Assuming Neumann or Dirichlet boundary conditions, we prove existence of a positive radial solution to the corresponding boundary value problem when Ω is an annulus, or an exterior domain of the form RN∖Br(0)¯. We also provide a nonexistence result: if p≥[Formula presented] the corresponding Dirichlet problem has no nontrivial regular solution in strictly star-shaped domains. Finally, when considering annular domains, letting α→0+ we recover existence results for the corresponding local problem with power-type nonlinearity.
2025
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3549957
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact