Human population pressures and activities pose unprecedented challenges to water resources in urban environments. However, standard methods of assessing microbial water quality have relied on the same cultured organisms for decades. We show that there is a conserved microbial assemblage in untreated sewage that can be exploited to improve global sewage surveillance. Among harbour and coastal water samples from 18 cities across 5 continents (n = 442), nearly half had evidence of sewage contamination using two human faecal bacteria as molecular indicators. In contrast, conventional measures using cultured Escherichiacoli or enterococci only exceeded water quality limits in ~18% of samples, with less than half of these demonstrating sewage indicators. Contaminated locations also displayed a signature characteristic of microorganisms mainly derived from sewer infrastructure. Given the human health risk, loss of ecosystem services and economic costs associated with contaminated coastal waters, molecular approaches could provide more reliable information on sewage contamination of urban waterways.

Universal microbial indicators provide surveillance of sewage contamination in harbours worldwide

Airoldi, Laura;
2024

Abstract

Human population pressures and activities pose unprecedented challenges to water resources in urban environments. However, standard methods of assessing microbial water quality have relied on the same cultured organisms for decades. We show that there is a conserved microbial assemblage in untreated sewage that can be exploited to improve global sewage surveillance. Among harbour and coastal water samples from 18 cities across 5 continents (n = 442), nearly half had evidence of sewage contamination using two human faecal bacteria as molecular indicators. In contrast, conventional measures using cultured Escherichiacoli or enterococci only exceeded water quality limits in ~18% of samples, with less than half of these demonstrating sewage indicators. Contaminated locations also displayed a signature characteristic of microorganisms mainly derived from sewer infrastructure. Given the human health risk, loss of ecosystem services and economic costs associated with contaminated coastal waters, molecular approaches could provide more reliable information on sewage contamination of urban waterways.
2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3549889
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact