Datasets play a central role in scholarly communications. However, scholarly graphs are often incomplete, particularly due to the lack of connections between publications and datasets. Therefore, the importance of dataset recommendation—identifying relevant datasets for a scientific paper, an author, or a textual query—is increasing. Although various methods have been proposed for this task, their reproducibility remains unexplored, making it difficult to compare them with new approaches. We reviewed current recommendation methods for scientific datasets, focusing on the most recent and competitive approaches, including an SVM-based model, a bi-encoder retriever, a method leveraging co-authors and citation network embeddings, and a heterogeneous variational graph autoencoder. These approaches underwent a comprehensive analysis under consistent experimental conditions. Our reproducibility efforts show that three methods can be reproduced, while the graph variational autoencoder is challenging due to unavailable code and test datasets. Hence, we re-implemented this method and performed a component-based analysis to examine its strengths and limitations. Furthermore, our study indicated that three out of four considered methods produce subpar results when applied to real-world data instead of specialized datasets with ad-hoc features.

Reproducibility and Analysis of Scientific Dataset Recommendation Methods

Irrera O.
;
Silvello G.
2024

Abstract

Datasets play a central role in scholarly communications. However, scholarly graphs are often incomplete, particularly due to the lack of connections between publications and datasets. Therefore, the importance of dataset recommendation—identifying relevant datasets for a scientific paper, an author, or a textual query—is increasing. Although various methods have been proposed for this task, their reproducibility remains unexplored, making it difficult to compare them with new approaches. We reviewed current recommendation methods for scientific datasets, focusing on the most recent and competitive approaches, including an SVM-based model, a bi-encoder retriever, a method leveraging co-authors and citation network embeddings, and a heterogeneous variational graph autoencoder. These approaches underwent a comprehensive analysis under consistent experimental conditions. Our reproducibility efforts show that three methods can be reproduced, while the graph variational autoencoder is challenging due to unavailable code and test datasets. Hence, we re-implemented this method and performed a component-based analysis to examine its strengths and limitations. Furthermore, our study indicated that three out of four considered methods produce subpar results when applied to real-world data instead of specialized datasets with ad-hoc features.
2024
RecSys 2024 - Proceedings of the 18th ACM Conference on Recommender Systems
18th ACM Conference on Recommender Systems, RecSys 2024
File in questo prodotto:
File Dimensione Formato  
2024_recsys_ILDS.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 659.87 kB
Formato Adobe PDF
659.87 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3549587
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact