We provide a thermodynamic derivation of the only-phase Popov action functional, which is often adopted to study the low-energy effective hydrodynamics of a generic nonrelativistic superfluid. It is shown that the crucial assumption is the use of the saddle point approximation after neglecting the quantum-pressure term. As an application, we analyze charged superfluids (superconductors) coupled to the electromagnetic field at zero temperature. Our only-phase and minimally-coupled theory predicts the decay of the electrostatic field inside a superconductor with a characteristic length much smaller than the London penetration depth of the static magnetic field. This result is confirmed also by a relativistic only-phase Popov action we obtain from the Klein-Gordon Lagrangian.
Only-phase Popov action: thermodynamic derivation and superconducting electrodynamics
Salasnich, L;Pelizzo, M G;Lorenzi, F
2024
Abstract
We provide a thermodynamic derivation of the only-phase Popov action functional, which is often adopted to study the low-energy effective hydrodynamics of a generic nonrelativistic superfluid. It is shown that the crucial assumption is the use of the saddle point approximation after neglecting the quantum-pressure term. As an application, we analyze charged superfluids (superconductors) coupled to the electromagnetic field at zero temperature. Our only-phase and minimally-coupled theory predicts the decay of the electrostatic field inside a superconductor with a characteristic length much smaller than the London penetration depth of the static magnetic field. This result is confirmed also by a relativistic only-phase Popov action we obtain from the Klein-Gordon Lagrangian.File | Dimensione | Formato | |
---|---|---|---|
Salasnich_2024_J._Phys._A__Math._Theor._57_355302.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
347.2 kB
Formato
Adobe PDF
|
347.2 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.