The widespread usage of point clouds (PC) for immersive visual applications has resulted in the use of very heterogeneous receiving conditions and devices, notably in terms of network, hardware, and display capabilities. In this scenario, quality scalability, i.e., the ability to reconstruct a signal at different qualities by progressively decoding a single bitstream, is a major requirement that has yet to be conveniently addressed, notably in most learning-based PC coding solutions. This paper proposes a quality scalability scheme, named Scalable Quality Hyperprior (SQH), adaptable to learning-based static point cloud geometry codecs, which uses a Quality-conditioned Latents Probability Estimator (QuLPE) to decode a high-quality version of a PC learning-based representation, based on an available lower quality base layer. SQH is integrated in the future JPEG PC coding standard, allowing to create a layered bitstream that can be used to progressively decode the PC geometry with increasing quality and fidelity. Experimental results show that SQH offers the quality scalability feature with very limited or no compression performance penalty at all when compared with the corresponding non-scalable solution, thus preserving the significant compression gains over other state-of-the-art PC codecs.

POINT CLOUD GEOMETRY SCALABLE CODING WITH A QUALITY-CONDITIONED LATENTS PROBABILITY ESTIMATOR

Mari D.
Software
;
Milani S.
Supervision
;
2024

Abstract

The widespread usage of point clouds (PC) for immersive visual applications has resulted in the use of very heterogeneous receiving conditions and devices, notably in terms of network, hardware, and display capabilities. In this scenario, quality scalability, i.e., the ability to reconstruct a signal at different qualities by progressively decoding a single bitstream, is a major requirement that has yet to be conveniently addressed, notably in most learning-based PC coding solutions. This paper proposes a quality scalability scheme, named Scalable Quality Hyperprior (SQH), adaptable to learning-based static point cloud geometry codecs, which uses a Quality-conditioned Latents Probability Estimator (QuLPE) to decode a high-quality version of a PC learning-based representation, based on an available lower quality base layer. SQH is integrated in the future JPEG PC coding standard, allowing to create a layered bitstream that can be used to progressively decode the PC geometry with increasing quality and fidelity. Experimental results show that SQH offers the quality scalability feature with very limited or no compression performance penalty at all when compared with the corresponding non-scalable solution, thus preserving the significant compression gains over other state-of-the-art PC codecs.
2024
Proceedings - International Conference on Image Processing, ICIP
31st IEEE International Conference on Image Processing, ICIP 2024
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3548367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact