We introduce a generalized inverse Gaussian setting and consider the maximal operator associated with the natural analogue of a nonsymmetric Ornstein--Uhlenbeck semigroup. We prove that it is bounded on $L^{p}$ when $p\in (1,\infty]$ and that it is of weak type $(1,1)$, with respect to the relevant measure. For small values of the time parameter $t$, the proof hinges on the "forbidden zones" method previously introduced in the Gaussian context. But for large times the proof requires new tools.

Boundedness properties of the maximal operator in a nonsymmetric inverse Gaussian setting

Valentina Casarino
Membro del Collaboration Group
;
Paolo Ciatti
Membro del Collaboration Group
;
2025

Abstract

We introduce a generalized inverse Gaussian setting and consider the maximal operator associated with the natural analogue of a nonsymmetric Ornstein--Uhlenbeck semigroup. We prove that it is bounded on $L^{p}$ when $p\in (1,\infty]$ and that it is of weak type $(1,1)$, with respect to the relevant measure. For small values of the time parameter $t$, the proof hinges on the "forbidden zones" method previously introduced in the Gaussian context. But for large times the proof requires new tools.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3546626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact