Background: The central nervous system's influence on cardiac function is well described; however, direct evidence for signaling from heart to brain remains sparse. Mice with cardiac-selective overexpression of adenylyl cyclase type 8 (TGAC8) display elevated heart rate/contractility and altered neuroautonomic surveillance. Objectives: In this study the authors tested whether elevated adenylyl cyclase type 8–dependent signaling at the cardiac cell level affects brain activity and behavior. Methods: A telemetry system was used to record electrocardiogram (ECG) and electroencephalogram (EEG) in TGAC8 and wild-type mice simultaneously. The Granger causality statistical approach evaluated variations in the ECG/EEG relationship. Mouse behavior was assessed via elevated plus maze, open field, light-dark box, and fear conditioning tests. Transcriptomic and proteomic analyses were performed on brain tissue lysates. Results: Behavioral testing revealed increased locomotor activity in TGAC8 that included a greater total distance traveled (+43%; P < 0.01), a higher average speed (+38%; P < 0.01), and a reduced freezing time (–45%; P < 0.01). Dual-lead telemetry recording confirmed a persistent heart rate elevation with a corresponding reduction in ECG-R-waves interval variability and revealed increased EEG-gamma activity in TGAC8 vs wild-type. Bioinformatic assessment of hippocampal tissue indicated upregulation of dopamine 5, gamma-aminobutyric acid A, and metabotropic glutamate 1/5 receptors, major players in gamma activity generation. Granger causality analyses of ECG and EEG recordings showed a marked increase in informational flow between the TGAC8 heart and brain. Conclusions: Perturbed signals arising from the heart cause changes in brain activity, altering mouse behavior. More specifically, the brain interprets augmented myocardial humoral/functional output as a “sustained exercise-like” situation and responds by activating central nervous system output controlling locomotion.

Cardiac AC8 Over-Expression Increases Locomotion by Altering Heart-Brain Communication

Agrimi J.;Paolocci N.
;
2023

Abstract

Background: The central nervous system's influence on cardiac function is well described; however, direct evidence for signaling from heart to brain remains sparse. Mice with cardiac-selective overexpression of adenylyl cyclase type 8 (TGAC8) display elevated heart rate/contractility and altered neuroautonomic surveillance. Objectives: In this study the authors tested whether elevated adenylyl cyclase type 8–dependent signaling at the cardiac cell level affects brain activity and behavior. Methods: A telemetry system was used to record electrocardiogram (ECG) and electroencephalogram (EEG) in TGAC8 and wild-type mice simultaneously. The Granger causality statistical approach evaluated variations in the ECG/EEG relationship. Mouse behavior was assessed via elevated plus maze, open field, light-dark box, and fear conditioning tests. Transcriptomic and proteomic analyses were performed on brain tissue lysates. Results: Behavioral testing revealed increased locomotor activity in TGAC8 that included a greater total distance traveled (+43%; P < 0.01), a higher average speed (+38%; P < 0.01), and a reduced freezing time (–45%; P < 0.01). Dual-lead telemetry recording confirmed a persistent heart rate elevation with a corresponding reduction in ECG-R-waves interval variability and revealed increased EEG-gamma activity in TGAC8 vs wild-type. Bioinformatic assessment of hippocampal tissue indicated upregulation of dopamine 5, gamma-aminobutyric acid A, and metabotropic glutamate 1/5 receptors, major players in gamma activity generation. Granger causality analyses of ECG and EEG recordings showed a marked increase in informational flow between the TGAC8 heart and brain. Conclusions: Perturbed signals arising from the heart cause changes in brain activity, altering mouse behavior. More specifically, the brain interprets augmented myocardial humoral/functional output as a “sustained exercise-like” situation and responds by activating central nervous system output controlling locomotion.
2023
File in questo prodotto:
File Dimensione Formato  
Agrimi J et al. AC8 overexpression locomotion JACC Clin Electrophysiol 2023.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Altro
Dimensione 2.77 MB
Formato Adobe PDF
2.77 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3546206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex 13
social impact